Advertisement

Mathematical Models and Computer Simulations

, Volume 10, Issue 2, pp 164–175 | Cite as

Anisotropic Closure Model in Mixed Cells

  • Y. V. Yanilkin
  • O. O. Toporova
  • V. Yu. Kolobyanin
Article

Abstract

The paper offers a new anisotropic closure model for equations of Lagrangian gas dynamics and elastoplastic in mixed cells containing several components (materials). The model is realized in the EGAK code; and numerical investigations of a method on test problems are conducted. The paper presents full statements of two one-dimensional problems and one two-dimensional problem, as well as a description of the processing technique for the results. The numerical results are compared with the results obtained by another closure model available in the EGAK code and with the analytical solutions. The analysis and discussion of the computational results are presented.

Keywords

closure models Lagrange gas dynamics mixed cells EGAK code 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Tipton, “CALE mixed zone pressure relaxation,” private commun. (Lawrence Livermore Natl. Laboratory, 1989).Google Scholar
  2. 2.
    D. Miller and G. Zimmerman, “An algorithm for time evolving volume fractions in mixed zones in lagrangian hydrodynamics calculations,” Report UCRL-PRES-223908 (Lawrence Livermore Natl. Laboratory, 2006).Google Scholar
  3. 3.
    M. Baer and J. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials,” Int. J. Multiphase Flow 12, 861–889 (1986).CrossRefzbMATHGoogle Scholar
  4. 4.
    A. Murrone and H. Guillard, “A five equation reduced model for compressible two phase flow problems,” J. Comput. Phys. 202, 664–698 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Kamm, M. Shashkov, J. Fung, A. Harrison, and T. Canfield, “A comparative study of various pressure relaxation closure models for one-dimensional two-material lagrangian hydrodynamics,” Int. J. Numer. Meth. Fluids 65, 1311–1324 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    M. Shashkov, “Closure models for multimaterial cells in arbitrary lagrangian-eulerian hydrocodes,” Int. J. Numer. Meth. Fluids 56, 1497–1504 (2007).CrossRefzbMATHGoogle Scholar
  7. 7.
    M. Francois, M. Shashkov, E. Dendy, and R. Lowrie, “Mixture models for multimaterial eulerian and lagrangian hydrocodes,” Report LAUR-10-03391 (Los Alamos Natl. Laboratory, 2010).Google Scholar
  8. 8.
    Y. Yanilkin, E. Goncharov, V. Kolobyanin, V. Sadchikov, J. Kamm, M. Shashkov, and W. Rider, “Multi-material pressure relaxation methods for lagrangian hydrodynamics,” Comput. Fluids 83, 137–143 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Y. Bondarenko and Y. Yanilkin, “Computation of the thermodynamic parameters in the mixed cells in gas dynamics,” Math. Model. 14, 63–81 (2002).zbMATHGoogle Scholar
  10. 10.
    V. I. Delov and V. V. Sadchikov, “Comparison of some models for calculation of thermodynamic parameters of lagrange cells with inhomogeneous composition,” Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, No. 1, 57–70 (2005).Google Scholar
  11. 11.
    E. A. Goncharov and Yu. V. Yanilkin, “The new computational method for thermodynamic state of materials in mixed cells,” Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, No. 3, 16–30 (2004).Google Scholar
  12. 12.
    A. Barlow, “A new lagrangian scheme for multimaterial cells,” in Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Computational Fluid Dynamics Conference, Swansea–Wales, UK, 2001, pp. 235–294.Google Scholar
  13. 13.
    A. Despres and F. Lagoutiere, “Numerical solution of two-component compressible fluid model with interfaces,” Prog. Comput. Fluid Dyn. 7, 295–310 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    R. Hill, A. Barlow, and M. Shashkov, “Interface-aware sub-scale dynamics closure model,” Report LAUR-12-21959 (Loughborough, UK, 2012).Google Scholar
  15. 15.
    J. W. Grove, “Pressure-velocity equilibrium hydrodynamic models,” Acta Math. Sci. B 30, 563–594 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. M. Bakhrakh, V. P. Spiridonov, and A. A. Shanin, “A method for heterogeneous medium gas-dynamic flow computations in lagrangian-eulerian coordinates,” Dokl. Akad. Nauk SSSR 276 (4) (1984).Google Scholar
  17. 17.
    F. H. Harlow, “The particle-in-cell method for numerical solution of problems in fluid dynamics,” Proc. Symp. Appl. Math. 15, 269(1963).CrossRefGoogle Scholar
  18. 18.
    E. A. Goncharov, V. Yu. Kolobyanin, and Yu. V. Yanilkin, “Closure method of lagrangian gas dynamics in mixed cells based on the equality of component velocities,” Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, No. 4, 100–105 (2006).Google Scholar
  19. 19.
    A. Barlow, R. Hill, and M. Shashkov, “Constrained optimization framework for interface-aware sub-scale dynamics closure model for multimaterial cells in lagrangian and arbitrary lagrangian-eulerian hydrodynamics,” J. Comput. Phys. 276, 92–135 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yu. V. Yanilkin, S. P. Belyaev, Yu. A. Bondarenko, et al., “Eulerian numerical methods EGAK and TREK for simulation of multidimensional flows of multicomponent media,” Tr. RFIATS-VNIIEF, No. 12, 54–65 (2008).Google Scholar
  21. 21.
    E. A. Goncharov, Yu. V. Yanilkin, and V. Yu. Kolobyanin, “On the determination of artificial viscosity for mixed cell compoonents,” Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, No. 2, 15–29 (2010).Google Scholar
  22. 22.
    Yu. Yanilkin et al., “Study and implementation of multi-material pressure relaxation methods for lagrangian hydrodynamics,” Report under Task Order 039, LANS/VNIIEF Agreement No. 37713-000-02-35, Deliverable 5.2 (LANS, 2010).Google Scholar
  23. 23.
    Yu. Yanilkin et al., “Study and implementation of multi-material pressure relaxation methods for lagrangian hydrodynamics,” Report under Task Order 039, LANS/VNIIEF Agreement No. 37713-000-02-35, Deliverable 5.3 (LANS, 2011).Google Scholar
  24. 24.
    Mathematical Simulation of Turbulent Mixing in Compressible Media, Course of Lectures, Ed. by Yu. V. Yanilkin, V. P. Statsenko, and V. I. Kozlov (FGUP RFIATS-VNIIEF, Sarov, 2009) [in Russian].Google Scholar
  25. 25.
    EGIDA-2D Code for 2D Problems Simulation, The School-Book, Ed. by Yu. V. Yanilkin (FGUP RFIATSVNIIEF, Sarov, 2008), Vol. 1 [in Russian].Google Scholar
  26. 26.
    A. A. Kraiukhin, V. A. Svidinskii, A. L. Stadnik, and Yu. V. Yanilkin, “Nonstationary problems for testing elastoplasticity codes,” Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, No. 2, 17–30 (2016).Google Scholar
  27. 27.
    R. Saurel and R. Abgrall, “A multiphase Godunov method for compressible multifluid and multiphase flows,” J. Comput. Phys. 150, 425–467 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    B. Plohr, “Shockless acceleration of thin plates modeled by a tracled random choice method,” AIAA J. 26, 470–478 (1988).CrossRefzbMATHGoogle Scholar
  29. 29.
    G. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws,” J. Comput. Phys. 27, 1–31 (1978).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Y. V. Yanilkin
    • 1
  • O. O. Toporova
    • 1
  • V. Yu. Kolobyanin
    • 1
  1. 1.Russian Federal Nuclear CenterAll-Russian Research Institute of Experimental PhysicsSarov, Nizhny Novgorod oblastRussia

Personalised recommendations