Skip to main content
Log in

Gas-Dynamic General Circulation Model of the Lower and Middle Atmosphere of the Earth

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

This paper presents a brief description of the General Circulation Model of the lower and middle atmosphere of the Earth, which is designed to study atmospheric dynamics in a wide range of spatial-temporal scales. The model is based on numerical integration of the complete system of equations that describe the dynamics of a viscous atmospheric gas using a spatial grid with a high resolution. The model takes into account the surface relief and the presence of atmosphere aerosols in the form of microdroplets of water ice particles, as well as the phase transitions of water vapor to aerosol particles and back.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Monin, Theoretical Principles of Geophysical Hydrodynamics (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  2. L. J. Donner et al., “The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3,” J. Clim. 24, 3438–3519 (2011).

    Article  Google Scholar 

  3. G. S. Rivin et al., “The COSMO-ru system of nonhydrostatic mesoscale short-range weather forecasting of the hydrometcenter of Russia: the second stage of implementation and development,” Russ. Meteorol. Hydrol. 49, 400–410 (2015).

    Article  Google Scholar 

  4. V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Problems of modeling climate and climate change,” Izv., Atmos. Ocean. Phys. 42, 568–586 (2006).

    Article  Google Scholar 

  5. V. N. Lykosov et al., Supercomputer Modeling in Climate System Physics (Mosk. Gos. Univ., Moscow, 2012) [in Russian].

    Google Scholar 

  6. B. N. Chetverushkin and E. V. Shilnikov, “Software package for 3D viscous gas flow simulation on multiprocessor computer systems,” Comput. Math. Math. Phys. 48, 295–305 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  7. O. M. Belotserkovskii, A. M. Oparin, I. V. Mingalev, V. S. Mingalev, O. V. Mingalev, and V. M. Chechetkin, “Formation of large-scale vortices in shear flows of the lower atmosphere of the Earth in the region of tropical latitudes,” Cosm. Res. 47, 446–479 (2009).

    Article  Google Scholar 

  8. I. V. Mingalev, K. G. Orlov, and V. S. Mingalev, “The mechanism of formation of polar cyclones and possibility their predictions by using satellite observation data,” Sovrem. Probl. Distants. Zondir. Zemli Kosmosa 8 (1), 255–262 (2011).

    Google Scholar 

  9. I. V. Mingalev, N. M. Astaf’eva, K. G. Orlov, V. S. Mingalev, O. V. Mingalev, and V. M. Chechetkin, “Possibility of a detection of tropical cyclones and hurricanes formation according to satellite remote sensing,” Sovrem. Probl. Distants. Zondir. Zemli Kosmosa 8 (3), 290–296 (2011).

    Google Scholar 

  10. I. V. Mingalev, K. G. Orlov, and V. S. Mingalev, “A mechanism of formation of polar cyclones and possibility of their prediction using satellite observations,” Cosm. Res. 50, 160–169 (2012).

    Article  Google Scholar 

  11. I. V. Mingalev, K. G. Orlov, V. S. Mingalev, O. V. Mingalev, N. M. Astaf’eva, and V. M. Chechetkin, “Numerical simulation of formation of cyclone vortex flows in the intratropical zone of convergence and their early detection,” Cosm. Res. 50, 233–248 (2012).

    Article  Google Scholar 

  12. I. V. Mingalev, N. M. Astafieva, K. G. Orlov, V. S. Mingalev, O. V. Mingalev, and V. M. Chechetkin, “A simulation study of the formation of large-scale cyclonic and anticyclonic vortices in the vicinity of the intertropical convergence zone,” ISRN Geophys. 2013, 215362(2013).

    Article  Google Scholar 

  13. I. Mingalev, K. Orlov, and V. Mingalev, “A modeling study of the initial formation of polar lows in the vicinity of the arctic front,” Adv. Meteorol. 2014, 970547(2014).

    Article  Google Scholar 

  14. I. V. Mingalev, N. M. Astafieva, K. G. Orlov, V. S. Mingalev, O. V. Mingalev, and V. M. Chechetkin, “Numerical modeling of the initial formation of cyclonic vortices at tropical latitudes,” Atmos. Clim. Sci. 4, 899–906 (2014).

    Google Scholar 

  15. A. M. Obukhov, Turbulence and Dynamics of the Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  16. P. C. Reist, Introduction to Aerosol Science (Macmillan, London, New York, 1984).

    Google Scholar 

  17. B. N. Chetverushkin, Mathematical Modeling of Problems in the Dynamics of Radiating Gas (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  18. B. A. Fomin, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave,” J. Geophys. Res. 109, D02110 (2004). doi 10.1029/ 2003JD003802

    Article  Google Scholar 

  19. B. A. Fomin and M. P. Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave,” J. Geophys. Res. 110, D02106 (2005). doi 10.1029/2004JD005163

    Article  Google Scholar 

  20. A. V. Shilkov and M. N. Gerthev, “Verification of the Lebesgue averaging method,” Math. Models Comput. Simul. 8, 93–107 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  21. V. S. Mingalev, I. V. Mingalev, O. V. Mingalev, A. M. Oparin, and K. G. Orlov, “Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid,” Comput. Math. Math. Phys. 50, 877–899 (2010). doi 10.1134/S0965542510050118

    Article  MathSciNet  MATH  Google Scholar 

  22. V. A. Bakhtin, V. A. Kryukov, B. N. Chetverushkin, and E. V. Shil’nikov, “Extension of the DVM parallel programming model for clusters with heterogeneous nodes,” Dokl. Math. 84, 879–881 (2011).

    Article  MathSciNet  Google Scholar 

  23. J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, “NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues,” J. Geophys. Res. 107 (A12), 1468–1483 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mingalev.

Additional information

Original Russian Text © B.N. Chetverushkin, I.V. Mingalev, K.G. Orlov, V.M. Chechetkin, V.S. Mingalev, O.V. Mingalev, 2017, published in Matematicheskoe Modelirovanie, 2017, Vol. 29, No. 8, pp. 59–73.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetverushkina, B.N., Mingalev, I.V., Orlov, K.G. et al. Gas-Dynamic General Circulation Model of the Lower and Middle Atmosphere of the Earth. Math Models Comput Simul 10, 176–185 (2018). https://doi.org/10.1134/S2070048218020047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048218020047

Keywords

Navigation