Skip to main content
Log in

Numerical simulation of the failure of composite materials by using the grid-characteristic method

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

This is an overview of the existing criteria of the failure of the composite materials and of the results of the application of some of them to simulate a low-speed hit on the composition material for the three-dimensional statement of the problem. Simulation is made by means of the grid-characteristic method. Reasons are given for the selection of specific criteria and they are compared with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Hinton, A. S. Kaddour, and P. D. Soden, Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise (Elsevier, Amsterdam, London, 2004).

    Google Scholar 

  2. M. J. Hinton and A. S. Kaddour, “Maturity of 3D failure criteria for fibre-reinforced composites: comparison between theories and experiments: Part B of WWFE-II,” J. Compos. Mater., No. 7, 925–966 (2013).

    Google Scholar 

  3. W. Nowacki, Theory of Elasticity (PWN, Warsaw, 1970; Mir, Moscow, 1970).

    MATH  Google Scholar 

  4. L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1970; World Scientific, Singapore, 1996), Vol. 1.

    Google Scholar 

  5. R. P. Fedorenko, Introduction to Computational Physics (Mosk. Fiz. Tekh. Inst., Moscow, 1994) [in Russian].

    Google Scholar 

  6. F. B. Chelnokov, “Explicit expression of grid-characteristic schemes for elasticity equations in 2D and 3D,” Mat. Model. 18 (6), 96–108 (2006).

    MathSciNet  MATH  Google Scholar 

  7. K. M. Magomedov and A. S. Kholodov, Grid-Characteristic Numerical Methods (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  8. I. B. Petrov and A. V. Favorskaya, “Library of high order interpolation methods on unstructured triangular and tetrahedral meshes,” Inform. Tekhnol., No. 9, 30–32 (2011).

    Google Scholar 

  9. P. I. Agapov, O. M. Belotserkovskii, and I. B. Petrov, “Numerical simulation of the consequences of a mechanical action on a human brain under a skull injury,” Comput. Math. Math. Phys. 46, 1629–1638 (2006).

    Article  MathSciNet  Google Scholar 

  10. O. M. Belotserkovskii, Numerical Simulation in Continuous Media Mechanics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  11. K. A. Beklemysheva, I. B. Petrov, and A. V. Favorskaya, “Numerical simulation of processes in solid deformable media in the presence of dynamic contacts using the grid-characteristic method,” Math. Mod. Comput. Simul. 6, 294–304 (2014).

    Article  Google Scholar 

  12. A. A. Il’yushin, Plasticity (Gostekhizdat, Moscow, 1948) [in Russian].

    MATH  Google Scholar 

  13. R. Hill, “A theory of the yielding and plastic flow of anisotropic metals,” Proc. R. Soc. London A 193, 281–297 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos. Mater. 5, 58–80 (1971).

    Article  Google Scholar 

  15. R. Hill, “Theoretical plasticity of textured aggregates,” Math. Proc. Cambridge Philos. Soc., No. 85, 179–191 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Abrate, “Criteria for yielding or failure of cellular materials,” J. Sandwich Struct. Mater. 10, 5–51 (2008).

    Article  Google Scholar 

  17. F. Barlat and O. Cazacu, “Generalization of Drucker’s yield criterion to orthotropy,” Math. Mech. Solids 6, 613–630 (2001).

    Article  MATH  Google Scholar 

  18. Y. Huang, C. Liu, and M. G. Stout, “On the asymmetric yield surface of plastically orthotropic materials: a phenomenological study,” Acta Mater. 45, 2397–2406 (1997).

    Article  Google Scholar 

  19. Z. Hashin and A. Rotem, “A fatigue failure criterion for fiber reinforced materials,” J. Compos. Mater. 7, 448–464 (1973).

    Article  Google Scholar 

  20. R. C. Batra, G. Gopinath, and J. Q. Zheng, “Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates,” Compos. Struct. 94, 540–547 (2012).

    Article  Google Scholar 

  21. A. Puck and W. Schneider, “On failure mechanisms and failure criteria of filament-wound glass-fibre/resin composites,” Plast. Polym. 37, 33–42 (1969).

    Google Scholar 

  22. A. Puck and H. Schurmann, “Failure analysis of FRP laminates by means of physically based phenomenological models,” Compos. Sci. Technol. 62, 1633–1662 (2002).

    Article  Google Scholar 

  23. A. Elmarakbi, H. Fukunaga, H. Wang, and Y. Zemba, “Stable numerical simulations of propagations of complex damages in composite structures under transverse loads,” Compos. Sci. Technol. 67, 752–765 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Petrov.

Additional information

Original Russian Text © K.A. Beklemysheva, A.V. Vasyukov, A.S. Ermakov, I.B. Petrov, 2016, published in Matematicheskoe Modelirovanie, 2016, Vol. 28, No. 2, pp. 97–100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beklemysheva, K.A., Vasyukov, A.V., Ermakov, A.S. et al. Numerical simulation of the failure of composite materials by using the grid-characteristic method. Math Models Comput Simul 8, 557–567 (2016). https://doi.org/10.1134/S2070048216050033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048216050033

Keywords

Navigation