Advertisement

Numerical simulation of aerodynamic and acoustic characteristics of a ducted rotor

  • I. V. Abalakin
  • P. A. Bahvalov
  • V. G. Bobkov
  • T. K. Kozubskaya
  • V. A. Anikin
Article

Abstract

This work is devoted to the numerical simulation of the problem about a rotor rotation in a duct in a noninertial reference frame based on the Euler equations. The configuration is a model of a tail rotor of a helicopter. The calculations were carried out using highly accurate EBR schemes on unstructured tetrahedral meshes with the variables determined at the nodes. The numerical results on the aerodynamic forces, as well as the intensity and direction of the acoustic radiation in the far field, are presented and analyzed.

Keywords

numerical simulation inviscid flow rotating reference frame EBR scheme ducted rotor aerodynamic forces far field acoustics unstructured mesh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. Srinivasan and J. D. Baeder, “TURNS: a free-wake Euler-Navier-Stokes numerical method for helicopter,” AIAA J. 31, 959–962 (1993).CrossRefGoogle Scholar
  2. 2.
    O. Rouzaud, J. Raddatz, and J. C. Boniface, “Euler calculations of multibladed rotors in hover by DLR and ONERA methods and comparison with helishape tests,” in Proceedings of the American Helicopter Society 53rd Annual Forum, Virginia Beach, 29 April–1 May, 1997.Google Scholar
  3. 3.
    H. Pomin and S. Wagner, “Navier-Stokes analysis of helicopter rotor aerodynamics in hover and forward flight,” J. Aircraft 39, 813–821 (2002).CrossRefGoogle Scholar
  4. 4.
    R. Steijl, G. N. Barakos, and K. Badcock, “A framework for CFD analysis of helicopter rotors in hover and forward flight,” Int. J. Numer. Meth. Fluids 51, 819–847 (2006).CrossRefMATHGoogle Scholar
  5. 5.
    A. D. Gardner and K. Richter, “Influence of rotation on dynamic stall,” J. Am. Helicopter Soc. 58, 032001 (2013).Google Scholar
  6. 6.
    S. A. Karabasov, “Application of a hybrid approach for far-field sound prediction from high-speed helicopter blades,” Mat. Model. 18 (2), 3–23 (2006).MATHGoogle Scholar
  7. 7.
    V. F. Kopev, V. A. Titarev, and I. V. Beliaev, “Development of the new approach for calculating the noise screws using supercomputers,” Uchen. Zap. TsAGI 45 (2), 78–106 (2014).Google Scholar
  8. 8.
    J. E. Ffowcs Williams, and D. L. Hawkings, “Sound generated by turbulence and surfaces in arbitrary motion,” Phil. Trans. R. Soc. A 264 (1151), 321–342 (1969).CrossRefMATHGoogle Scholar
  9. 9.
    I. V. Abalakin and T. K. Kozubskaya, “Higher accuracy scheme based on edge-oriented quasi-1B reconstruction of variables for solving aerodynamics and aeroacoustics problems on unstructured meshes,” Mat. Model. 25 (8), 109–136 (2013).MathSciNetGoogle Scholar
  10. 10.
    I. Abalakin, P. Bakhvalov, and T. Kozubskaya, “Edge-based reconstruction schemes for prediction of near field flow region in complex aeroacoustics problems,” Int. J. Aeroacoust. 13, 207–234 (2014).CrossRefGoogle Scholar
  11. 11.
    P. A. Bakhvalov, “Quasi one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems,” Mat. Model. 25 (9), 95–108 (2013).Google Scholar
  12. 12.
    Ch. Hirsch, Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics, 2nd ed. (Butterworth-Heinemann, Amsterdam, 2007).Google Scholar
  13. 13.
    P. A. Bakhvalov, T. K. Kozubskaya, E. D. Kornilina, A. V. Morozov, and M. V. Jakobovskii, “Technology of predicting acoustic disturbances in flow far field,” Math. Models Comput. Simul. 4, 363–373 (2012).MathSciNetCrossRefGoogle Scholar
  14. 14.
    ANSYS ICEM CFD. http://www.cae-expert.ru/product/ansys-icem-cfdGoogle Scholar
  15. 15.
    Y. Saad, Iterative Methods for Sparse Linear Systems (PWS, Boston, 1996).MATHGoogle Scholar
  16. 16.
    W. Johnson, Helicopter Theory (Princeton Univ. Press, Princeton, NJ, 1980).Google Scholar
  17. 17.
    Hybrid Computational Cluster K-100 of Keldysh Inst. Appl. Math. http://www.kiam.ru/MvS/resourses/k100.htmlGoogle Scholar
  18. 18.
    I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, and T. K. Kozubskaia, “NOISETTE parallel program complex for large-scale calculations of aerodynamics and aeroacoustics problems,” Vychisl. Metody Programmir. 13, 110–125 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. V. Abalakin
    • 1
  • P. A. Bahvalov
    • 1
  • V. G. Bobkov
    • 1
  • T. K. Kozubskaya
    • 1
  • V. A. Anikin
    • 2
  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Kamov JSCLubertsi, Moscow oblastRussia

Personalised recommendations