Advertisement

Mathematical Models and Computer Simulations

, Volume 7, Issue 5, pp 467–474 | Cite as

The convergence order of weno schemes behind a shock front

  • N. A. Mikhailov
Article

Abstract

Numerical analysis has shown that high order finite-volume WENO schemes have only the first order of convergence in the smooth part of a weak solution behind a shock front. The order of integral convergence of the difference solution is found to estimate the accuracy of the translation of the Rankine-Hugoniot conditions through the shock front.

Keywords

finite-volume WENO schemes Rankine-Hugoniot conditions integral convergence order of convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Casper and M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound,” SIAM J. Sci. Comput. 19, 813–828 (1998).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    B. Engquist and B. Sjogreen, “The convergence rate of finite difference schemes in the presence of shocks,” SIAM J. Numer. Anal. 34, 2464–2485 (1998).MathSciNetCrossRefGoogle Scholar
  3. 3.
    V. V. Ostapenko, “Convergence of finite-difference schemes behind a shock front,” Comput. Math. Math. Phys. 37, 1161–1172 (1997).MathSciNetGoogle Scholar
  4. 4.
    B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and their Applications to Gas Dynamics (Nauka, Moscow, 1978; Amer. Math. Soc., Providence, 1983).Google Scholar
  5. 5.
    V. V. Ostapenko, “Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity,” Comput. Math. Math. Phys. 38, 1299–1311 (1998).MathSciNetMATHGoogle Scholar
  6. 6.
    V. V. Ostapenko, “On convergence of high order shock capturing difference schemes,” AIP Conf. Proc. 1301, 413–425 (2010).MathSciNetCrossRefGoogle Scholar
  7. 7.
    C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservations laws,” ICASE Report No. 97–65 (1997).Google Scholar
  8. 8.
    N. K. Yamaleev and M. H. Carpenter, “A systematic methodology for constructing high-order energy stable WENO schemes,” J. Comput. Phys. 228, 4248–4272 (2009).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    R. Borgers, M. Carmona, B. Costa, and W. S. Don, “An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws,” J. Comput. Phys. 227, 3191–3211 (2008).MathSciNetCrossRefGoogle Scholar
  10. 10.
    E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction (Springer, Heidelberg, 2009).CrossRefMATHGoogle Scholar
  11. 11.
    S. Gottlieb, C.-W. Shu, and E. Tadmor, “Strong stability preserving high-order time discretization methods,” SIAM Rev. 43, 89–112 (2001).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    V. V. Ostapenko, “Construction of high-order accurate shock-capturing finite difference schemes for unsteady shock waves,” Comput. Math. Math. Phys. 40, 1784–1800 (2000).MathSciNetMATHGoogle Scholar
  13. 13.
    S. Gottlieb, D. Gottlieb, and C.-W. Shu, “Recovering high-order accuracy in WENO compuatations of steadystate hyperbolic systems,” J. Sci. Comput. 28, 307–318 (2006).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Russian Federal Nuclear Center Zababakhin All-Russia Research Institute of Technical PhysicsSnezhinskRussia

Personalised recommendations