Advertisement

Determination of the diffusion coefficient

  • A. F. Mastryukov
Article
  • 57 Downloads

Abstract

A multilevel algorithm for solving the inverse problem for the diffusion equation by the optimization method using Laguerre functions is considered. Numerical calculations are carried out for Maxwell’s equations in a one-dimensional formulation in the diffusion approximations. Using the known solution, we find the medium’s conductivity distribution at some point of space. The function of the Laguerre harmonics is minimized by Newton’s method and the conjugate gradients technique. We investigate the influence of the form of the source of the electromagnetic waves and its spectrum on the solution’s accuracy for the inverse problem. The accuracy of this solution obtained by a multi-level algorithm and using conventional single-level algorithms is compared.

Keywords

diffusion coefficient Maxwell’s equations multilevel method Laguerre’s method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).Google Scholar
  2. 2.
    Electrical Prospecting. Geophysicist’s Manual, Ed. by G. Tarkhov (Nedra, Moscow, 1980) [in Russian].Google Scholar
  3. 3.
    J. Beck, B. Blackwell, and C. St.-Clair, Inverse Heat Conduction Ill-Posed Problem (Wiley, New York, 1985; Mir, Moscow, 1989).Google Scholar
  4. 4.
    A. N. Tikhonov and V. Ya. Arsenin, Solution of Ill-Posed Problems (Wiley, New York, 1977; Nauka, Moscow, 1979).Google Scholar
  5. 5.
    R. P. Fedorenko, Approximate Solution of Optimal Control Problems (Nauka, Moscow, 1978) [in Russian].MATHGoogle Scholar
  6. 6.
    F. P. Vasil’ev, Numerical Methods for Solving Extremal Problems (Nauka, Moscow, 1980), p. 518 [in Russian].Google Scholar
  7. 7.
    V. V. Plotkin, “Inversion of heterogeneous anisotropic magnetotelluric responces,” Russ. Geol. Geophys. 53, 829 (2012).CrossRefGoogle Scholar
  8. 8.
    A. Hu, T. M. Abubakar, and J. Liu. Habashy, “Preconditioned non-linear conjugate gradient method for frequency domain full-waveform seismic inversion,” Geophys. Prospect. 59, 477–491 (2011).CrossRefGoogle Scholar
  9. 9.
    G. A. Newton and D. L. Alumbaugh, “Three-dimensional magnetotelluric inversion using non-linear conjugate gradients,” Geophys. J. Int. 140, 410–424 (2000).CrossRefGoogle Scholar
  10. 10.
    A. F. Mastryukov, “Inverse solution to the diffusion equation using the Laguerre spectral transform,” Mat. Model., No. 9, 15–26 (2007).Google Scholar
  11. 11.
    A. F. Mastryukov and B. G. Mikhailenko, “Inverse solution to the wave equation using the Laguerre transform,” Russ. Geol. Geophys. 44, 575 (2007).CrossRefGoogle Scholar
  12. 12.
    B. G. Mikhailenko, “Spectral Laguerre method for the approximate solution of time dependent problems,” Appl. Math. Lett. 12, 105–110 (1999).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. Stegun (Nation. Bureau of Standards, New York, 1964; Moscow, Nauka, 1979).MATHGoogle Scholar
  14. 14.
    C. Bunks, F. M. Saleck, S. Zaleski, and G. Chavent, “Multiscale seismic waveform inversion,” Geophys. 60, 1457–1473 (1995).CrossRefGoogle Scholar
  15. 15.
    A. F. Mastryukov, “Recovery of two-dimensional conductivity of medium by optimization method,” Geol. Geofiz., No. 3, 686–692 (1997).Google Scholar
  16. 16.
    R. P. Fedorenko, “A relaxation method for solving elliptic difference equations,” Zh. Vychisl. Mat. Mat. Fiz. 1, 922–927 (1961).MathSciNetMATHGoogle Scholar
  17. 17.
    J. Demmel, Applied Numerical Linear Algebra (SIAM, Philadelphia, 1997).CrossRefGoogle Scholar
  18. 18.
    M. I. Epov, V. L. Mironov, S. A. Komarov, and K. V. Muzalevskii, “Ultrabroadband electromagnetic wave propagation in hydrocarbon reservoirs in the presence of an oil-water interface,” Russ. Geol. Geophys., No. 1, 46 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations