Skip to main content
Log in

Numerical solution of integrodifferential heat conduction equation for a nonlocal medium

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A heat conduction model is proposed based on the relations of rational thermodynamics of irreversible processes, taking into account the nonlocal nature of the medium and the finite speed of heat propagation. In the one-dimensional case, the numerical solution of the integral-differential equation of heat conduction is obtained by the finite-element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnology (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  2. R. A. Andrievskii and A. V. Ragulya, Nanostructured Materials (Izd. Tsentr “Akademiya,” Moscow, 2005) [in Russian].

    Google Scholar 

  3. N. Kobayashi, Introduction to Nanotechnology (Binom, Moscow, 2005) [in Russian].

    Google Scholar 

  4. Ch. P. Pool Jr. and F. J. Owens, Introduction to Nanotechnology (Wiley, Hoboken, NJ, 2003).

    Google Scholar 

  5. S. T. Mileiko, “Composites and nanostructures,” Kompos. Nanostruct., No. 1, pp. 6–37 (2009).

    Google Scholar 

  6. G. N. Kuvyrkin, Thermomechanics of a Deformable Solid Body under High-Intensity Loading (MGTU, Moscow, 1993) [in Russian].

    Google Scholar 

  7. B. C. Zarubin and G. N. Kuvyrkin, “Mathematical model of a relaxing solid body under nonstationary loading,” Dokl. Ross. Akad. Nauk 345(2), pp. 193–195 (1995).

    Google Scholar 

  8. B. C. Zarubin and G. N. Kuvyrkin, “Mathematical modeling of thermomechanical processes under intense thermal effect,” High Temp. 41(2), pp. 300–309 (2003).

    Article  Google Scholar 

  9. B. C. Zarubin and G. N. Kuvyrkin, Mathematical Models of Mechanics and Electrodynamics of Continuous Medium (MGTU, Moscow, 2008) [in Russian].

    Google Scholar 

  10. Introduction to Micromechanics, Ed. by M. Onami (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  11. A. M. Krivtsov, Deformation and Fracture of Solids with a Microstructure (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  12. A. Cemal Eringen. Nonlocal Continuum Field Theories (Springer, New York, 2002).

    MATH  Google Scholar 

  13. V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savelyeva, “Nonlocal mathematical model of heat conduction in solids,” Vestn. MGTU, Ser. Estestv. Nauk No. 3, pp. 20–30

  14. V. E. Troshchiev and R. M. Shagaliev, “Conservative nodal schemes of finite-difference and finite-element methods for two-dimensional equation of heat conduction,” Chisl. Mekh. Sploshn. Sred 15(4), pp. 131–157 (1984).

    Google Scholar 

  15. J. E. Akin, Application and Implementation of Finite Element Method (Acad. Press, London, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Savelyeva.

Additional information

Original Russian Text © G.N. Kuvyrkin, I.Yu. Savelyeva, 2013, published in Matematicheskoe Modelirovanie, 2013, Vol. 25, No. 5, pp. 99–108.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuvyrkin, G.N., Savelyeva, I.Y. Numerical solution of integrodifferential heat conduction equation for a nonlocal medium. Math Models Comput Simul 6, 1–8 (2014). https://doi.org/10.1134/S2070048214010104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048214010104

Keywords

Navigation