Numerical solution of integrodifferential heat conduction equation for a nonlocal medium

Article

Abstract

A heat conduction model is proposed based on the relations of rational thermodynamics of irreversible processes, taking into account the nonlocal nature of the medium and the finite speed of heat propagation. In the one-dimensional case, the numerical solution of the integral-differential equation of heat conduction is obtained by the finite-element method.

Keywords

nonlocal medium internal state parameters integral-differential equation of heat conduction finite-element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnology (Fizmatlit, Moscow, 2005) [in Russian].Google Scholar
  2. 2.
    R. A. Andrievskii and A. V. Ragulya, Nanostructured Materials (Izd. Tsentr “Akademiya,” Moscow, 2005) [in Russian].Google Scholar
  3. 3.
    N. Kobayashi, Introduction to Nanotechnology (Binom, Moscow, 2005) [in Russian].Google Scholar
  4. 4.
    Ch. P. Pool Jr. and F. J. Owens, Introduction to Nanotechnology (Wiley, Hoboken, NJ, 2003).Google Scholar
  5. 5.
    S. T. Mileiko, “Composites and nanostructures,” Kompos. Nanostruct., No. 1, pp. 6–37 (2009).Google Scholar
  6. 6.
    G. N. Kuvyrkin, Thermomechanics of a Deformable Solid Body under High-Intensity Loading (MGTU, Moscow, 1993) [in Russian].Google Scholar
  7. 7.
    B. C. Zarubin and G. N. Kuvyrkin, “Mathematical model of a relaxing solid body under nonstationary loading,” Dokl. Ross. Akad. Nauk 345(2), pp. 193–195 (1995).Google Scholar
  8. 8.
    B. C. Zarubin and G. N. Kuvyrkin, “Mathematical modeling of thermomechanical processes under intense thermal effect,” High Temp. 41(2), pp. 300–309 (2003).CrossRefGoogle Scholar
  9. 9.
    B. C. Zarubin and G. N. Kuvyrkin, Mathematical Models of Mechanics and Electrodynamics of Continuous Medium (MGTU, Moscow, 2008) [in Russian].Google Scholar
  10. 10.
    Introduction to Micromechanics, Ed. by M. Onami (Metallurgiya, Moscow, 1987) [in Russian].Google Scholar
  11. 11.
    A. M. Krivtsov, Deformation and Fracture of Solids with a Microstructure (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  12. 12.
    A. Cemal Eringen. Nonlocal Continuum Field Theories (Springer, New York, 2002).MATHGoogle Scholar
  13. 13.
    V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savelyeva, “Nonlocal mathematical model of heat conduction in solids,” Vestn. MGTU, Ser. Estestv. Nauk No. 3, pp. 20–30Google Scholar
  14. 14.
    V. E. Troshchiev and R. M. Shagaliev, “Conservative nodal schemes of finite-difference and finite-element methods for two-dimensional equation of heat conduction,” Chisl. Mekh. Sploshn. Sred 15(4), pp. 131–157 (1984).Google Scholar
  15. 15.
    J. E. Akin, Application and Implementation of Finite Element Method (Acad. Press, London, 1982).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations