Mathematical Models and Computer Simulations

, Volume 4, Issue 5, pp 471–483 | Cite as

Modeling the magnetization kinetics of ferromagnetic particles by the Monte Carlo method

  • P. V. Melenev
  • Yu. L. Raikher
  • V. V. Rusakov
  • R. Perzynski
Article

Abstract

The Monte Carlo method, which is a powerful tool for finding equilibrium states (and/or their corresponding characteristics) in systems of a different nature in many cases allows one to also describe the course of kinetic processes. This work presents the Monte Carlo modeling of magnetic relaxation and dynamics of induced magnetization of an ensemble of ferromagnetic nanoparticles. It is shown by comparison with the exact solution that in both problems there is a proportionality between the number of calculation steps and the physical duration of the transition or periodic process. On this basis, relationships are proposed making it possible to estimate the time interval corresponding to a single Monte Carlo step. For the process of magnetic relaxation the obtained result is a generalization of the well-known Nowak-Chantrell-Kennedy formula for the case of particles with finite magnetic anisotropy.

Keywords

Monte Carlo method magnetic nanoparticles superparamagnetism magnetic hysteresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics. 3rd ed. (Cambridge University Press, New York, 2009).MATHCrossRefGoogle Scholar
  2. 2.
    J. Garcia-Otero, M. Porto, J. Rivas, and A. Bunde, “Influence of Dipolar Interaction on Magnetic Properties of Ultrafine Ferromagnetic Particles,” Phys. Rev. Lett. 84(1), 167–170 (2000).CrossRefGoogle Scholar
  3. 3.
    M. Ulrich, J. Garcia-Otero, J. Rivas, and A. Bunde, “Slow Relaxation in Ferromagnetic Nanoparticles: Indication of Spin-Glass Behavior,” Phys. Rev. B 67(1–4), 024416 (2003).CrossRefGoogle Scholar
  4. 4.
    D. Serantes, D. Baldomir, C. Martinez-Boubeta, K. Simeonidis, M. Angelakeris, E. Natividad, M. Castro, A. Mediano, D.-X. Chen, A. Sanchez, L. I. Balcells, and B. Martinez, “Influence of Dipolar Interactions on Hyperthermia Properties of Ferromagnetic Particles,” J. Appl. Phys. 108(1–5), 073918 (2010).CrossRefGoogle Scholar
  5. 5.
    S. W. Sides, P. A. Rikvold, and M. A. Novotny, “Stochastic Hysteresis and Resonance in a Kinetic Ising System,” Phys. Rev. E 57, 6512–6533 (1998).CrossRefGoogle Scholar
  6. 6.
    G. Brown, M. A. Novotny, and P. A. Rikvold, “Thermal and Dynamic Effects in Langevin Simulation of Hysteresis in Nanoscale Pillars,” Physica, B 306(1–4), 117–120 (2001).CrossRefGoogle Scholar
  7. 7.
    U. Nowak, R. W. Chantrell, and E. C. Kennedy, “Monte Carlo Simulation with Time Step Quantification in Terms of Langevin Dynamics,” Phys. Rev. Lett. 84(1), 163–166 (2000).CrossRefGoogle Scholar
  8. 8.
    A. G. Gurevitch, and G. A. Melkov, Magnetic Oscillations and Waves (Nauka, Moscow, 1994) [in Russian].Google Scholar
  9. 9.
    W. F. Brown, Jr., “Thermal Fluctuations of a Single-Domain Particle,” Phys. Rev. 130(5), 1677–1686 (1963).CrossRefGoogle Scholar
  10. 10.
    W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, The Langevin Equation. with Applications in Physics, Chemistry and Electrical Engineering, 2nd ed. (World Scientific, Singapore, 2004).MATHGoogle Scholar
  11. 11.
    Yu. L. Raikher and V. I. Stepanov, “Nonlinear Dynamic Susceptibilities and Field-Induced Birefringence in Magnetic Fluids,” Adv. Chem. Phys. 129, 419–588 (2004).CrossRefGoogle Scholar
  12. 12.
    R. Smirnov-Rueda, O. Chubykalo, U. Nowak, R. Chantrell, and J. M. Gonzalez, “Real Time Quantification of Monte Carlo Steps for Different Time Scales,” J. Appl. Phys. 87(9), 4798–4800 (2000).CrossRefGoogle Scholar
  13. 13.
    O. Chubykalo, U. Nowak, R. Smirnov-Rueda, M. A. Wongsam, R. W. Chantrell, and M. Gonzalez, “Monte Carlo Technique with a Quantified Time Step: Application to the Motion of Magnetic Moments,” Phys. Rev. B 67(1–10), 064422 (2003).CrossRefGoogle Scholar
  14. 14.
    X. Z. Cheng, M. B. A. Jalil, H. K. Lee, and Y. Okabe, “Time-Quantifiable Monte Carlo Method for Simulating a Magnetization-Reversal Process,” Phys. Rev. B 72(1–8), 094420 (2005).CrossRefGoogle Scholar
  15. 15.
    X. Z. Cheng, M. B. A. Jalil, H. K. Lee, and Y. Okabe, “Mapping the Monte Carlo Scheme To Langevin Dynamics: A Fokker-Planck Approach,” Phys. Rev. Lett. 96(1–4), 067208 (2006).CrossRefGoogle Scholar
  16. 16.
    W. T. Coffey, P. J. Cregg, D. S. F. Crothers, J. T. Waldron, and A. W. Wickstead, “Simple Approximate Formulae for the Magnetic Relaxation Time of Single Domain Ferromagnetic Particles with Uniaxial Anisotropy,” J. Magn. Magn. Mater. 131(3), L301–L303 (1994).CrossRefGoogle Scholar
  17. 17.
    I. S. Poperechny, Yu. L. Raikher, and V. I. Stepanov, “Dynamic Magnetic Hysteresis in Single-Domain Particles with Uniaxial Anisotropy,” Phys. Rev. B 82(1–14), 174423 (2010).CrossRefGoogle Scholar
  18. 18.
    P. V. Melenev, Yu. L. Raikher, V. V. Rusakov, and R. Perzynski, “Monte Carlo Model for the Dynamic Magnetization of Microspheres,” Phys. Proc. 9, 54–57 (2010).CrossRefGoogle Scholar
  19. 19.
    R. Aquino, J. Depeyrot, M. H. Sousa, F. A. Tourinho, E. Dubois, and R. Perzynski, “Magnetization Temperature Dependence and Freezing of Surface Spins in Magnetic Fluids Based on Ferrite Nanoparticles,” Phys. Rev. B 72(1–9), 184435 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • P. V. Melenev
    • 1
  • Yu. L. Raikher
    • 1
    • 2
  • V. V. Rusakov
    • 1
    • 2
  • R. Perzynski
    • 3
  1. 1.Institute of Continuous Media Mechanics, Ural BranchRussian Academy of SciencesPermRussia
  2. 2.Perm National Research Polytechnical UniversityPerm-GSPRussia
  3. 3.Laboratoire PECSA-CNRS-ESPCIUniversité Pierre et Marie CurieParisFrance

Personalised recommendations