Advertisement

Adaptive modified alternating triangular iterative method for solving grid equations with a non-self-adjoint operator

  • A. I. Sukhinov
  • A. E. Chistyakov
Article

Abstract

Adaptive methods for solving convection-diffusion problems are developed. A variant of the adaptive modified alternating triangular method of minimal corrections is constructed and its convergence rate is estimated given that the grid Peclet number is bounded, which holds for monotone difference approximations of diffusion-convection problems. Results of the numerical calculation of spatial three-dimensional currents in the Sea of Azov are given; a parallel implementation of this method performed on a supercomputer at the Taganrog Institute of Technology is considered.

Keywords

grid equations with a non-self-adjoint operator adaptive alternating triangular method parallel algorithms for solving grid equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).Google Scholar
  2. 2.
    A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Convection-Diffusion Problems (Editorial URSS, Moscow, 1999) [in Russian].Google Scholar
  3. 3.
    A. N. Konovalov, “To the Theory of the Alternating Triangle Iteration Method,” Sib. Math. J. 43, 552–572 (2002).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Convection-Diffusion Problems (Editorial URSS, Moscow, 1999) [in Russian].Google Scholar
  5. 5.
    A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations (Nauka, Moscow, 1978; Bikhauser Verlag, Basel, 1989).Google Scholar
  6. 6.
    A. I. Sukhinov, “Modified Alternating Triangle Method for Heat Conduction and Filtration Problems,” in Computational Systems and Algorithms, (Izd-vo RGU, Rostov-on-Don, 1984), pp. 52–59.Google Scholar
  7. 7.
    A. E. Chistyakov, “Three-Dimensional Model of Motion of Water in the Sea of Azov Taking into Account Salt and Heat Transport,” Izvestiya YuFU. Tekhnicheskie nauki. Tematicheskii vypusk “ktual’-nye problemy matematicheskogo modelirovaniya” 8(97), 75–82 (Izd-Vo TTI YuFU, Taganrog, 2009).Google Scholar
  8. 8.
    A. E. Chistyakov, “Theoretical Estimates of Acceleration and Efficiency of Parallel Implementation of ATM of Steepest Decent,” Izvestiya YuFU. Tekhnicheskie nauki. Tematicheskii vypusk “Aktual’nye problemy matematicheskogo modelirovaniya”, 6(107), 237–249 (Izd-Vo TTI YuFU, Taganrog, 2010).Google Scholar
  9. 9.
    A. I. Sukhinov and A. V. Shishenya, “Improving Estimate of the parameter γ1 of the Alternating Triangle Iteration Method with A Priori Information,” Izvestiya YuFU. Tekhnicheskie nauki. Tematicheskii vypusk “Aktual’nye problemy matematicheskogo modelirovaniya”, 6(107), 7–15 (Izd-Vo TTI YuFU, Taganrog, 2010).Google Scholar
  10. 10.
    A. I. Sukhinov, A. E. Chistyakov, and E. V. Alekseenko, “Numerical Realization of the Three-Dimensional Model of Hydrodynamics for Shallow Water Basins on a High-Performance System,” Math. Models Comput. Simul. 3(5), 562–574 (2011).MathSciNetCrossRefGoogle Scholar
  11. 11.
    E. A. Al’shina, A. A. Boltnev, and O. A. Kacher, “Gradient Methods with Improved Convergence Rate,” Comp. Math. Math. Phys. 45, 356–365 (2005).MathSciNetGoogle Scholar
  12. 12.
    O. Yu. Milyukova, “Parallel Iterative Methods with Factorized Preconditioning Matrix for Discrete Elliptic Equations on Non-Uniform Grid,” Mat. Mod. 15(4), 3–15 (2003).MathSciNetGoogle Scholar
  13. 13.
    O. Yu. Milyukova, “Parallel Iterative Methods Using Factorized Preconditioning Matrices for Solving Elliptic Equations on Triangular Grids,” Comput. Math. Math. Phys. 46, 1044–1060 (2006).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Technology of the Southern Federal UniversityTaganrogRussia

Personalised recommendations