Mathematical Models and Computer Simulations

, Volume 4, Issue 1, pp 26–35 | Cite as

Nonlinear radial oscillations and spatial translations of a nonspherical gas bubble in a liquid

  • A. A. Aganin
  • L. A. Kosolapova
  • V. G. Malakhov


A mathematical model of dynamics of a gas bubble in a liquid with non-small distortions of its spherical shape has been developed, with allowing for the spatial translations of the bubble, as well as the influence of the gravitational force and the liquid velocity. The liquid viscosity and compressibility are taken into account approximately. It has been shown that in some particular cases the derived equations are coincident with those obtained by the other authors. Some results of solving the problem of oscillations of a moving nonspherical bubble under periodic variation of liquid pressure are presented.


a nonspherical gas bubble potential flow of fluid nonlinear oscillations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Plesset and A. Prosperetti, “Bubble Dynamics and Cavitation,” Annu. Rev. Fluid Mech 9, pp. 145–185 (1977).CrossRefGoogle Scholar
  2. 2.
    Z. C. Feng and L. G. Leal, “Nonlinear Bubble Dynamics,” Annu. Rev. Fluid Mech 29, pp. 201–242 (1997).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Z. C. Feng and L. G. Leal, “Translation Instability of a Bubble Undergoing Shape Oscillations,” Phys. Fluids 7(6), pp. 1325–1336 (1995).MATHCrossRefGoogle Scholar
  4. 4.
    A. A. Doinikov, “Translational Motion of a Bubble Undergoing Shape Oscillations,” J. Fluid Mech. 501, pp. 1–24 (2004).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    V. G. Levich, Physical-Chamical Hydrodynamics, (gos. izd-vo f.-m. liter, Moscow, 1959) [in Russian].Google Scholar
  6. 6.
    S. J. Show, “Translation and Oscillation of a Bubble Under Axisymmetric Deformation,” Physics of fluids 18, p. 15 (2006).Google Scholar
  7. 7.
    R. Mettin and A. A. Doinikov, “Translational Instability of a Spherical Bubble in a Standing Ultrasound Wave”, Preprint submitted in Elsevier 21 November 2008, p. 18.Google Scholar
  8. 8.
    A. A. Aganin, M. A. Il’gamov, L. A. Kosolapova, and V. G. Malakhov, “Non-linear Non-spherical Oscillations of a Gas Bubble at Periodic Changing of Pressure of Surrounding Liquid,” Teplofizika I Aeromekhanika 15(3), pp. 521–533 (2008).Google Scholar
  9. 9.
    R. I. Nigmatullin, I. Sh. Akhatov, and N. K. Vakhitova, “On Compressibility of Liquid in Dynamics of a Gas Bubble,” Dokl. Ross. Akad. Nauk 348(6), pp. 768–771 (1996).Google Scholar
  10. 10.
    M. A. Il’gamov, A. A. Aganin, L. A. Kosolapova, et al., “Models of Dynamics of Non-spherical Bubble Taking Viscosity of Liquid into Account,” in Tr. Mat. Tsentra im. N. I. Lobachevskogo. T.16. Modeli mekhaniki sploshnoi sredy. Materialy 16-i sessii Mezhdunar. shkoly po modelyam mekhaniki sploshnoi sredy (Kazan, 2002) [in Russian].Google Scholar
  11. 11.
    E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations. Nonstiff Problems (Mir, Moscow, 1990).Google Scholar
  12. 12.
    O. V. Voinov and A. G. Petrov, “Motion of Sphere of Alternating Volume in Ideal Liquid near Planar Surface,” Mekhanika Zhidkosti I Gaza, No. 5, pp. 94–103 (1971).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Aganin
    • 1
  • L. A. Kosolapova
    • 1
  • V. G. Malakhov
    • 1
  1. 1.Institute of Mechanics and Engineering, Kazan Science CenterRussian Academy of SciencesKazanRussia

Personalised recommendations