Advertisement

Mathematical Models and Computer Simulations

, Volume 3, Issue 4, pp 492–507 | Cite as

The basic element method

Article

Abstract

The basic element method (BEM) for decomposition of the algebraic polynomial via one cubic and three quadratic parabolas (basic elements) is developed within the four-point transformation technique. Representation of the polynomial via basic elements gives a lever for solving various tasks of applied mathematics. So, in the polynomial approximation and smoothing problems, the BEM allows one to reduce the computational complexity of algorithms and increase their resistance to errors by choosing an internal relationship structure between variable and control parameters.

Keywords

data smoothing least squares method approximation by polynomials linear regression four-point transformation efficiency of algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dzh. X. Uilkinson, Algebraicheskaya problema sobstvennykh znachenii (Nauka, Moscow, 1970) [in Russian].Google Scholar
  2. 2.
    Ch. Louson and R. Khenson, Chislennoe reshenie zadach metoda naimen’shikh kvadratov (Nauka, Moscow, 1986) [in Russian].Google Scholar
  3. 3.
    G. A. F. Seber, Linear Regression Analysis (Wiley, New York, 1977; Mir, Moscow, 1980).MATHGoogle Scholar
  4. 4.
    Dzh. Meindonald, Vychislitel’nye algoritmy v prikladnoi statistike (FiS, Moscow, 1988) [in Russian].Google Scholar
  5. 5.
    A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1979) [in Russian].Google Scholar
  6. 6.
    N. D. Dikusar, “Diskretnye proektivnye preobrazovaniya na koordinatnoi ploskosti,” Mat. Model. (1991).Google Scholar
  7. 7.
    N. D. Dikoussar, “Function Parameterization by Using 4-Point Transforms,” Comput. Phys. Commun. 99, 235–254 (1997).MATHCrossRefGoogle Scholar
  8. 8.
    N. D. Dikoussar, “Four-Point Transformation Methods in Approximation and the Smoothing Problems,” Physics of Particles and Nuclei Letters 5(3), 317–323 (2008).CrossRefGoogle Scholar
  9. 9.
    N. D. Dikusar, Kusochno-kubicheskoe priblizhenie i sglazhivanie krivykh v rezhime adaptatsii, Soobshch. OIYaI, R10-99-168 (Dubna, 1999) [in Russian].Google Scholar
  10. 10.
    Cs. Török and N. D. Dikoussar, “Approximation with Discrete Projective Transformation,” Comput. and Math. with Appl., 38, 211–220 (1999).MATHCrossRefGoogle Scholar
  11. 11.
    N. D. Dikusar and Cs. Török, “Avtomaticheskii poisk uzlov dlya kusochno-kubicheskoi approksimatsii,” Mat. Model., 18(3), 23–40 (2006).MathSciNetGoogle Scholar
  12. 12.
    N. D. Dikoussar and Cs. Török, “Data Smoothing by Splines with Free Knots,” Physics of Particles and Nuclei Letters 5(3), 324–327 (2008).CrossRefGoogle Scholar
  13. 13.
    N. D. Dikoussar and Cs. Török, “On One Approach to Local Surface Smoothing,” Kybernetika 43(4), 533–546 (2007).MATHMathSciNetGoogle Scholar
  14. 14.
    Cs. Török and N. D. Dikoussar, “MS.NET Components for Piecewise-Cubic Approximation,” Commun. of JINR, R 10-2004-202, Dubna (2004).Google Scholar
  15. 15.
    N. D. Dikoussar, A Local Cubic Smoothing in an Adaptation Mode, E10-2001.Google Scholar
  16. 16.
    M. Revayova and Cs. Török, “Piecewise Approximation and Neural Networks,” Kybernetika 43(4), 547–559 (2007).MATHMathSciNetGoogle Scholar
  17. 17.
    A. Matej ikova and Cs. Török, “Piecewise Smoothing with Two-Part Polynomial Scheme,” Commun. of JINR, Dubna, E11-2008 (2008).Google Scholar
  18. 18.
    W. Hardle, Prikladnaya neparametricheskaya regressiya (Mir, Moscow, 1993) [in Russian].Google Scholar
  19. 19.
    M. T. Vazan, Stokhasticheskaya approksimatsiya (Mir, Moscow, 1972) [in Russian].Google Scholar
  20. 20.
    Yu. S. Zav’yalov, B. I. Kvasov, and V. L. Miroshnichenko, Methods of Spline Functions (Nauka, Moscow, 1980) [in Russian].MATHGoogle Scholar
  21. 21.
    N. N. Kalitkin, Chislennye metody (FML, Moscow, 1978) [in Russian].Google Scholar
  22. 22.
    N. R. Dreiper and G. Smit, Prikladnoi regressionnyi analiz (S.Pb, Moscow) [in Russian].Google Scholar
  23. 23.
    B. Fridlender, Adaptivnye algoritmy dlya fil’trov s konechnoi impul’snoi kharakteristikoi // Adaptivnye fil’try, Eds. by K. F. N. Kouen and P. M. Grant, (Mir, Moscow, 1988), pp. 45–81 [in Russian].Google Scholar
  24. 24.
    K. Brebbiya, Zh. Telles, and L. Vroubel, Metody konechnykh elementov (Mir, Moscow, 1987) [in Russian].Google Scholar
  25. 25.
    J. B. Simoes, P. C. P. S. Simoes, and C. M. B. A. Correia, “Nuclear Spectroscopy Pulse Height Analysis Based on Digital Signal Processing Techniques,” IEEE Transactions on Nuclear Science 42(4), 700–704 (1995).CrossRefGoogle Scholar
  26. 26.
    Dzh. Golub and Ch. Loun, Matrichnyi analiz (Mir, Moscow, 1999) [in Russian].Google Scholar
  27. 27.
    N. Golyandina, V. Nekrutkin, and A. Zhigljavsky, Analisys of Time Series Structure SSA and Related Techniques. Chapman & Hall/CRC (Florida, Boca Raton, FL, 2001), pp. 13–78.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchLaboratory of Information TechnologiesMoscowRussia

Personalised recommendations