Plasma equilibrium in the magnetic field of Galatea traps

  • K. V. Brushlinskii
  • N. A. Chmykhova


A mathematical model of quasi-equilibrium plasma configuration around the current carrying wire in the Galatea magnetic trap is considered. It is separated by a finite distance from the conductor. The configuration is formed at the initial stage by increased electric current in the wire. After that, weak diffusion of the magnetic field in highly conductive plasma slowly destroys it. No magnetic gas dynamics (MGD) model of strong equilibrium configuration of this type exists.


plasma magnetic field conductor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Morozov and V. V. Savel’yev, Galatea-traps with Conductors Submerged in Plasma, Usp. Fiz. nauk. 168(11), 1153–1194 (1998).CrossRefGoogle Scholar
  2. 2.
    K. V. Brushlinskii and V.V. Savel’yev, Magnetic Traps to Contain Plasma, Matem. Model. 11(5), 3–36 (1999).Google Scholar
  3. 3.
    D. P. Kostomarov, S. Yu. Medvedev, and D. Yu. Sychugov, Mathematical Simulation of MGD-equilibrium of Plasma, Matem. Model. 20(5), 3–34 (2008).MATHMathSciNetGoogle Scholar
  4. 4.
    Yu. N. Dnestrovskii and D. P. Kostomarov, Mathematical Simulation of Plasma (Nauka, Moscow, 1982) [in Russian].Google Scholar
  5. 5.
    A. I. Morozov, Introduction in Plasmadynamics (Fizmatlit, Moscow, 2008) [in Russian].Google Scholar
  6. 6.
    K. V. Brushlinskii, Mathematical and Computational Problems of Magnetic Gas Dynamics (BINOM, Moscow, 2009) [in Russian].Google Scholar
  7. 7.
    V.D. Shafranov, Equilibrium Magnetodynamic Configurations, ZhETF 33(3(9)), 710–722 (1957).Google Scholar
  8. 8.
    H. Grad and H. Rubin, Hydromagnetic Equilibria and Force-free Fields, Proc. 2nd United Nations Int. Conf. on the Peaceful Uses of Atomic Energy, 31, 190 (1959).Google Scholar
  9. 9.
    K. V. Brushlinskii and K. P. Gorshenin, A Planar MGD model of the Formation of Plasma Configuration with Submerged Conductors, Matem. Model. 9(5), 28–36 (1997).MATHGoogle Scholar
  10. 10.
    G. I. Dudnikov, A. I. Morozov, and M. P. Fedoruk, Numerical Simulation of Straight Plasma Configuration — Galatea of “Belt” Type, Fiz. Plasm. 23(5), 387–396 (1997).Google Scholar
  11. 11.
    K. V. Brushlinskii, N. M. Zuyeva, M. S. Mikhailova, et al., Numerical Simulation of Straight Screw Cords with Conductors Submerged in Plsama, Fiz. plasmy 20(3), 284–292 (1994).Google Scholar
  12. 12.
    K. V. Brushlinskii, A. I. Morozov, and N. B. Petrovskaya, Numerical Simulation of Equilibrium Screw Configuration with Plasma on Sepatrix. Matem. Model. 10(11), 29–36 (1998).Google Scholar
  13. 13.
    E. Oran and J. Boris, Numerical Simulation of Reacting Flows (Mir, Moscow, 1990) [in Russian].Google Scholar
  14. 14.
    K. V. Brushlinskii, O. I. Zaliznyak, and N. A. Chmykhova, Plasma Dynamics and Equilibrium in the Vicinity of the Conductor with Current (MIFI-2007), 7, pp. 94–95.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Keldysh Institute for Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations