Mathematical Models and Computer Simulations

, Volume 2, Issue 6, pp 753–759 | Cite as

A two-temperature model of hydrate-bearing rock

Article
  • 31 Downloads

Abstract

A two-temperature model for describing the temperature field of a heat source in a hydrate-bearing rock is proposed. For the water/ice phase, the enthalpy formulation of the Stefan problem is used. Numerical simulation is accomplished through the finite element method.

Keywords

two-temperature model method of finite elements Stefan problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Istomin and V. S. Yakushev, Gas Hydrates under Natural Conditions (Nedra, Moscow, 1992) [in Russian].Google Scholar
  2. 2.
    G. D. Ginzburg and V. A. Solov’ev, Submarine Gas Hydrates (VNIIOkeangeologiya, St. Petersburg, 1994) [in Russian].Google Scholar
  3. 3.
    A. D. Duchkov, A. Yu. Manakov, and S. A. Kazantsev, “Experimental Simulation and Measuring of Heat Conductivity of Methane Hydrates-Containing Rocks,” Dokl. Akad. Nauk 408(5), 656–659 (2006).Google Scholar
  4. 4.
    R. Von Herzen and A. E. Maxwell, “The Measurement of Thermal Conductivity of Deep Sea Sediments by a Needle Probe Method,” J. Geophys. Res. 64(10), 557–563 (1959).Google Scholar
  5. 5.
    A. D. Duchkov, A. Yu. Manakov, S. A. Kazantsev, et al., “Simulation of Methane Hydrates-Containing Samples and Measuring of Their Heat Properties,” in Thermal Field of the Earth and Methods for Its Researching. Collection of Scientific Works, Ed. by Yu. A. Popov (RGGRU, Moscow, 2008), pp. 87–92 [in Russian].Google Scholar
  6. 6.
    V. S. Babkin and Yu. M. Laevskii, “Gases Filtration Burning,” Fiz. Goreniya Vzryva, No. 5, 531–547 (1987).Google Scholar
  7. 7.
    Yu. M. Laevsky and V. S. Babkin, “On the Theory of the Traveling Hybrid Wave,” Combust. Sci. Technol. 164, 29–144 (2001).CrossRefGoogle Scholar
  8. 8.
    A. M. Meirmanov, Stefan Problem (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  9. 9.
    R. I. Nigmatulin, V. Sh. Shagapov, and V. R. Syrtlanov, “Self-Similar Problem for Gas-Hydrate Decomposition in the Porous Medium Caused by Heat and Depression,” Prikl. Mekh. Tekh. Fiz. 39(3), 11–118 (1998).Google Scholar
  10. 10.
    R. I. Nigmatulin, V. Sh. Shagapov, and L. A. Nasyrova, “’Heat shock’ in Porous Medium Saturated by the Gas-Hydrate,” Dokl. Akad. Nauk 366(3), 337–340 (1999).Google Scholar
  11. 11.
    V. Sh. Shagapov, M. K. Khasanov, and N. G. Musakaev, “Gas-Hydrate Formation in the Porous Tank Partly Saturated by the Water under Cold Gas Injection,” Prikl. Mekh. Tekh. Fiz. 49(3), 37–150 (2008).Google Scholar
  12. 12.
    V. Sh. Shagapov, A. S. Chiglintseva, and V. R. Syrtlanov, “Analysis of the Process of Washing-out the Gas from Gas-Hydrate Deposit by Warm Water,” Teplofiz. Vys. Temp. 46(6), 911–918 (2008) [High Temp. 46 (6), 1841 (2008)].Google Scholar
  13. 13.
    J.-P. Aubin, Approximation of Elliptic Boundary-Valve Problems (New York, 1972; Mir, Moscow, 1977).Google Scholar
  14. 14.
    M. E. Aerov, O. M. Todes, and D. A. Narinskii, Devices with Stationary Grain Layer (Khimiya, Leningrad, 1979) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematic Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations