Skip to main content
Log in

Computational modeling of the propagation of hemodynamic impulses

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The computational modeling of the propagation of pressure and velocity impulses in a blood vessel is presented in linear approximation. Numerical solution of the linear set of hemodynamic equations is formed as the superposition of progressing waves (Riemann’s invariants) satisfying the transport equations. In this connection, the design of the composite difference scheme for the transport equation is emphasized in this article. Calculated examples are presented for the transport equation and the linear hemodynamic equations set. The proposed algorithm can be generalized to the case of the quasi-linear system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. V. Ashmetkov, A. Ya. Bunicheva, V. A. Lukshin, et al., Mathematical Simulation of Blood Circulation. Computer Models and Medical Progress (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  2. S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, and A. B. Khrulenko, Linear Analysis of Pressure and Velocity Waves in the System of Elastic Vessels (MAKS-Press, Moscow, 2001) [in Russian].

    Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

  4. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of How to Solve Numerically the Set of Hyperbolic Equations (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  5. V. M. Goloviznin and S. A. Karabasov, “Nonlinear Correction of “Kabare” Scheme,” Mat. Model. 10(12), 107–123 (1998).

    MathSciNet  Google Scholar 

  6. M. P. Galanin and T. G. Elenina, “Difference Schemes Testing for Linear Transport Equation,” Preprint No. 40, Keldysh Institute of Applied Mathematics (IPM im. M.V. Keldysha RAN, Moscow, 1999).

    Google Scholar 

  7. M. P. Galanin and T. G. Elenina, “Nonlinear Monotonization of Difference Schemes for Linear Transport Equation,” Preprint No. 44, Keldysh Institute of Applied Mathematics (IPM im. M.V. Keldysha RAN, Moscow, 1999).

    Google Scholar 

  8. A. P. Favorskii, N. N. Tyurina, M. A. Tygliyan, and A. P. Babii, Numerical Simulation of Hemodynamical Pulses Propagation (MAKS-Press, Moscow, 2008) [in Russian].

    Google Scholar 

  9. A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving the Gas Dynamics Problems (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  10. A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  11. A. A. Samarskii and A. V. Gulin, Numerical Methods of Mathematical Physics (Nauchnyi Mir, Moscow, 2000) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Tygliyan.

Additional information

Original Russian Text © A.P. Favorskii, M.A. Tygliyan, N.N. Tyurina, A.M. Galanina, V.A. Isakov, 2009, published in Matematicheskoe Modelirovanie, 2009, Vol. 21, No. 12, pp. 21–34.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favorskii, A.P., Tygliyan, M.A., Tyurina, N.N. et al. Computational modeling of the propagation of hemodynamic impulses. Math Models Comput Simul 2, 470–481 (2010). https://doi.org/10.1134/S207004821004006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004821004006X

Keywords

Navigation