Mathematical Models and Computer Simulations

, Volume 2, Issue 4, pp 470–481 | Cite as

Computational modeling of the propagation of hemodynamic impulses

  • A. P. Favorskii
  • M. A. Tygliyan
  • N. N. Tyurina
  • A. M. Galanina
  • V. A. Isakov
Article

Abstract

The computational modeling of the propagation of pressure and velocity impulses in a blood vessel is presented in linear approximation. Numerical solution of the linear set of hemodynamic equations is formed as the superposition of progressing waves (Riemann’s invariants) satisfying the transport equations. In this connection, the design of the composite difference scheme for the transport equation is emphasized in this article. Calculated examples are presented for the transport equation and the linear hemodynamic equations set. The proposed algorithm can be generalized to the case of the quasi-linear system.

Keywords

Maximum Principle Transport Equation Explicit Scheme Courant Number Linear Spline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. V. Ashmetkov, A. Ya. Bunicheva, V. A. Lukshin, et al., Mathematical Simulation of Blood Circulation. Computer Models and Medical Progress (Nauka, Moscow, 2001) [in Russian].Google Scholar
  2. 2.
    S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, and A. B. Khrulenko, Linear Analysis of Pressure and Velocity Waves in the System of Elastic Vessels (MAKS-Press, Moscow, 2001) [in Russian].Google Scholar
  3. 3.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).Google Scholar
  4. 4.
    A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of How to Solve Numerically the Set of Hyperbolic Equations (Fizmatlit, Moscow, 2001) [in Russian].Google Scholar
  5. 5.
    V. M. Goloviznin and S. A. Karabasov, “Nonlinear Correction of “Kabare” Scheme,” Mat. Model. 10(12), 107–123 (1998).MathSciNetGoogle Scholar
  6. 6.
    M. P. Galanin and T. G. Elenina, “Difference Schemes Testing for Linear Transport Equation,” Preprint No. 40, Keldysh Institute of Applied Mathematics (IPM im. M.V. Keldysha RAN, Moscow, 1999).Google Scholar
  7. 7.
    M. P. Galanin and T. G. Elenina, “Nonlinear Monotonization of Difference Schemes for Linear Transport Equation,” Preprint No. 44, Keldysh Institute of Applied Mathematics (IPM im. M.V. Keldysha RAN, Moscow, 1999).Google Scholar
  8. 8.
    A. P. Favorskii, N. N. Tyurina, M. A. Tygliyan, and A. P. Babii, Numerical Simulation of Hemodynamical Pulses Propagation (MAKS-Press, Moscow, 2008) [in Russian].Google Scholar
  9. 9.
    A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving the Gas Dynamics Problems (Nauka, Moscow, 1992) [in Russian].Google Scholar
  10. 10.
    A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1989) [in Russian].Google Scholar
  11. 11.
    A. A. Samarskii and A. V. Gulin, Numerical Methods of Mathematical Physics (Nauchnyi Mir, Moscow, 2000) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. P. Favorskii
    • 1
  • M. A. Tygliyan
    • 1
  • N. N. Tyurina
    • 1
  • A. M. Galanina
    • 1
  • V. A. Isakov
    • 1
  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations