Interaction of high-power laser pulses with low-density targets in experiments with the PALS installation



Numerical modeling of experiments on the interaction of high-power pulses with low-density porous media is considered. The experimental data were obtained by means of the PALS iodine laser (pulse energy up to 200 J and pulse duration of 0.4 ns). The original density of the porous medium varied from 2.25 to 18 µg/cm3. A new physico-mathematical model of such plasma is proposed, two-dimensional computations are performed, and good agreement between the calculated and experimental data is shown


Laser Radiation Initial Density Russian Laser Research Aluminum Substrate Dimensional Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. I. Bokov, A. A. Bunatyan, A. A. Lykov, et al., “The Way to Reduce the Microtarget Sensitivity to Nonsymmetry of Laser Irradiation,” PMTF, No. 4, 20 (Novosibirsk, 1982).Google Scholar
  2. 2.
    E. G. Gamaly, A. O. Fedyanin, I. G. Lebo, et al., “Nonlinear Stage in the Development of Hydrodynamic Instability in Laser Targets,” Laser and Particle Beams 8, 399–407 (1990).CrossRefGoogle Scholar
  3. 3.
    V. V. Ivanov, A. V. Kutsenko, I. G. Lebo, A. A. Matsveiko, Yu. A. Mikhailov, et al., “Anomalous Burnout of Thing Foils under Heating by Laser Radiation with High Brightness,” ZhETF 116, 1287–1299 (1999).Google Scholar
  4. 4.
    A. B. Iskakov, V. F. Tishkin, I. G. Lebo, J. Limpouch, K. Masek, and K. Rohlena, “Two-Dimencional Model of Thermal Smoothing of Laser Imprint in Double-Pulse Plasma,” Phys. Review E 61(1), 842–847 (2000).CrossRefGoogle Scholar
  5. 5.
    J. H. Nuckolls, A. R. Theissen, and G. H. Dahlbacka, US Patent No. 4376752 (15 March 1983).Google Scholar
  6. 6.
    I. G. Lebo, V. F. Rozanov, and V. F. Tishkin, “Hydrodynamic Instability and Target Design,” Laser and Particle Beams 12(3), 361–369 (1994).CrossRefGoogle Scholar
  7. 7.
    S. Yu. Gus’kov and V. B. Rozanov, “Interaction between Laser Radiation and Porous Medium and Nonequilibrium Plasma Formation,” Kvantovaya elektronika 24(8), 715–720 (1997).Google Scholar
  8. 8.
    V. B. Rozanov, “On Spherical Compression of the Targets with Thermonuclear Fuel, if Two Laser Beams are Used for Irradiation,” UFN 174(4), 371–382 (2005).CrossRefGoogle Scholar
  9. 9.
    M. Dunne, M. Borghesi, A. Ivase, M. Jones, R. Tailor, O. Willi, R. Gibson, S. Oldman, J. Mark, and R. Watt, “Evaluation of Foam Buffer Target Design for Spatially Uniform Ablation of a Laser-Irradiated Target,” Phys. Rev. Lett. 75(21), 3858–3861 (1995).CrossRefGoogle Scholar
  10. 10.
    J. Limpoch, N. N. Demchenko, S. Yu. Gus’kov, M. Kalal, A. Kasperczuk, et al., “Laser Interaction with Plastic Foam-Metallic Foil Layered Targets,” Plasma Phys. Control. Fusion 46, 1831–1846 (2004).CrossRefGoogle Scholar
  11. 11.
    A. E. Bugrov, I. N. Burdonskii, V. V. Gavrilov, et al., “Interaction between Powerful Laser Radiation and Low-Dense Porous Mediums,” ZhETF 111, 903–918 (1997).Google Scholar
  12. 12.
    T. Afshar-rad, M. Desselberger, M. Dunne, J. Edwards, J. M. Foster, D. Hoarty, M. W. Jones, S. J. Rose, P. A. Rosen, R. Taylor, and O. Willi, “Supersonic Propagation of an Ionization Front in Low Density Foam Targets Driven by Thermal Radiation,” Phys. Rev. Lett. 73, 74–77 (1994).CrossRefGoogle Scholar
  13. 13.
    J. A. Koch, K. G. Estebrook, J. D. Bauer, C. A. Back, A. M. Rubenchik, et al., “Time-Resolved X-ray Imaging of High-Power Laser-Irradiated Underdense Silica Aerogels and Agar Foams,” Phys. Plasmas 2, 3820–3831 (1995).CrossRefGoogle Scholar
  14. 14.
    A. E. Bugrov, I. N. Burdonskiy, I. K. Fasakhov, V. V. Gavrilov, A. Yu. Goltsov, A. I. Gromov, A. I. Kondrashov, N. G. Kovalskiy, S. F. Medovshchikov, V. G. Nikolaevskiy, V. M. Petryakov, and E. V. Zhuzhukalo, “Laser-Plasma Interaction in Experiments with Low-Density Volume-Structured Media on the “Mishen” Facility,” in Proc. of SPIE, Ed. by O. N. Krokhin, S. Yu. Guskov, and Yu. A. Merkuliev (Bellingham, WA, 2003), vol. 5228.Google Scholar
  15. 15.
    N. G. Borisenko and Yu. A. Merkul’ev, “The Targets with Microheterogeneous Structure for Spherical Irradiation,” in Works of FIAN (Nauka, Moscow, 1992), vol. 220, pp. 28–46 [in Russian].Google Scholar
  16. 16.
    J. Falconer, W. Nazarov, and C. J. Horsfield, “In Situ Production of Very Low Density Microporous Polymeric Foams,” J. Vac. Sci. Technol. A13, 1941 (1995).Google Scholar
  17. 17.
    A. E. Bugrov, I. N. Burdonskii, V. V. Gavrilov, et al., “Processes of Absorption and Dispersion of Powerful Laser Radiation in Low-Dense Porous Mediums,” ZhETF 115(3), 805–818 (1999).Google Scholar
  18. 18.
    N. G. Borisenko, Yu. A. Merkuliev, and A. I. Gromov, “Microheterogeneous Targets — a New Challenge in Technology, Plasma Physics, and Laser Interaction with Matter,” J. Moscow Phys. Soc. 4(3), 247–273 (1994).Google Scholar
  19. 19.
    W. Nazarov, “An In-Situ Polymerization Technique for the Production of Foam-Filled Laser Targets,” J. Moscow Phys. Soc. 8, 251–255 (1998).Google Scholar
  20. 20.
    I. G. Lebo, I. V. Popov, V. B. Rozanov, and V. F. Tishkin, “Numerical Simulation of Thermal Equalizing and Hydrodynamic Compensation in the Targets ‘Laser Hotbed’,” Kvantovaya elektronika, No. 22, 1257–1261 (1995).Google Scholar
  21. 21.
    A. B. Iskakiv, I. G. Lebo, V. B. Rozanov, and V. F. Tishkin, “On the Neutron Yield in the Two-Beam Scheme of Laser Heating and Compression of Spherical Shell Targets with a Low-Density Coating,” Journal of Russian Laser Research 22(1), 82–89 (2001).CrossRefGoogle Scholar
  22. 22.
    S. Yu. Gus’kov, N. N. Demchenko, V. B. Rozanov, et al., “Symmetric Compression of the Targets ‘Laser Hotbed’ by Little Number of Laser Beams,” Kvantovaya elektronika 33, 95–104 (2003).CrossRefGoogle Scholar
  23. 23.
    S. Yu. Gus’kov, N. V. Zmitrenko, I. V. Popov, V. B. Rozanov, and V. F. Tishkin, “2D Energy Transport and Plasma Generation, if the Laser Beam Acts onto the Substance with Subcritical Density,” Kvantovaya elektronika 30(7), 601–605 (2000).CrossRefGoogle Scholar
  24. 24.
    S. V. Bondarenko, S. G. Garanin, G. A. Kirillov, Yu. F. Kir’yanov, and G. G. Kochemasov, “Energy Transport in Tridimensional-Structured Medium,” Kvantovaya elektronika 31(1), 39–44 (2001).CrossRefGoogle Scholar
  25. 25.
    A. A. Akunets, N. G. Borisenko, D. Klir, V. Kmetik, E. Krousk, I. Limpoukh, K. Masek, Yu. A. Merkul’ev, V. G. Pimenov, M. Pfeier, I. Ulshmid, and A. M. Kholenkov, “Features of Penetration of Laser Radiation with Wave Length of 0.438 µm and Intensity of (3−7) × 1014 W/cm2 through Subcritical Plasma of Polymeric Aerogels,” Preprint No. 8 (FIAN, Moscow, 2007).Google Scholar
  26. 26.
    K. Jungwirth, A. Cejnarova, L. Juha, B. Kralicova, J. Krasa, et al., “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–3006 (2001).CrossRefGoogle Scholar
  27. 27.
    S. I. Braginskii, Transport Phenomenon in Plasma. Problems of Plasma Theory (Gosatomoizdat, Moscow, 1963), issue 1 [in Russian].Google Scholar
  28. 28.
    I. G. Lebo and V. F. Tishkin, Research of Hydrodynamical Instability in the Problems of Laser Thermonuclear Fusion (Nauka, Fizmatlit, Moscow, 2006), pp. 208–218 [in Russian].Google Scholar
  29. 29.
    Ya. B. Zel’dovich and M. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Monograph (Nauka, Fizmatlit, Moscow, 1966) [in Russian].Google Scholar
  30. 30.
    Yu. V. Afanas’ev, E. G. Gamalii, and V. B. Rozanov, “The Basic Equations of Laser Plasma Dynamics and Kinetics,” in Works of FIAN (Nauka, Moscow, 1982), vol. 134, No. 10 [in Russian].Google Scholar
  31. 31.
    R. M. More et al., Phys. Fluids 31(10), 3059 (1988).MATHCrossRefGoogle Scholar
  32. 32.
    E. Aristova, A. Iskakov, I. Lebo, and V. Tishkin, “2D-Lagrangian Code LATRANT for Simulation Radiation Gas Dynamic Problems,” in Proc. of SPIE. ECLIM 2002: 27th European Conf. on Laser Interaction with Matter. 7–11 October 2002 (Moscow, 2003), vol. 5228, pp. 131–141.Google Scholar
  33. 33.
    A. B. Iskakov, I. G. Lebo, I. V. Popov, V. B. Rozanov, and V. F. Tishkin, The Way to Consider Laser Beams Refraction under Simulation of 2D-Heterogeneous Compression of the Targets. Short Reports on Physics (FIAN, Moscow, 1997), Nos. 1–2, pp. 28–35 [In Russian].Google Scholar
  34. 34.
    I. G. Lebo, N. N. Demchenko, A. B. Iskakov, et al., “Simulation of High-Intensity Laser-Plasma Interactions by Use of 2D Lagrangian Code ‘ATLANT-HE’,” Laser and Particle Beams, No. 22, 267 (2004).Google Scholar
  35. 35.
    A. I. Lebo, I. G. Lebo, and D. Batani, “The Relationship between the Pressure in Compressed Condensed Substance and Parameters of High-Power Laser Pulses,” Kvantovaya elektronika 38(8), 747–754 (2008).CrossRefGoogle Scholar
  36. 36.
    Yu. V. Afanas’ev, E. G. Gamalii, N. N. Demchenko, and V. B. Rozanov, “Laser Radiation Absorption by Spherical Target by Considering the Refraction and Developed Hydrodynamics,” in Works of FIAN (Nauka, Moscow, 1982), vol. 134, pp. 32–41 [in Russian].Google Scholar
  37. 37.
    S. Z. Belen’kii and E. S. Fradkin, “Theory of Turbulent Mixing,” in Works of FIAN (Moscow, 1965), vol. 29, p. 207 [in Russian].Google Scholar
  38. 38.
    A. M. Khalenkov, N. G. Borisenko, V. N. Kondrashov, Yu. A. Merkul’ev, J. Limpouch, and V. G. Pimenov, “Experience of Microheterogeneous Target Fabrication to Study Energy Transport in Plasma near Critical Density,” Laser and Particle Beams 24(2) (2005).Google Scholar
  39. 39.
    I. V. Akimova, N. G. Borisenko, A. I. Gromov, A. M. Khalenkov, V. N. Kondrashov, J. Limpouch, E. Krousky, J. Kuba, K. Masek, Yu. A. Merkul’ev, W. Nazarov, V. G. Pimenov, “Regular 3-D Networks for Controlled Energy Transport Studies in Laser Plasma Near Critical Density,” Fusion Science and Technology 49(4), 676–685 (2006).Google Scholar
  40. 40.
    V. Rozanov, D. Brishpoltsev, G. Vergunova, et al., “Energy Transfer in Low-Density Porous Targets Doped by Heavy Elements. The Fifth Intern. Conf. on Inertial Fusion Sciences and Applications (IFSA2007),” Journ. of Physics: Conference Series 112, 022010 (2008).CrossRefGoogle Scholar
  41. 41.
    J. Limpouch, A. B. Iskakov, K. Masek, K. Rohlena, I. G. Lebo, and V. F. Tishkin, “Transverse Structures in Corona of Nonuniformly Irradiated Solid Targets,” Laser and Particle Beans, No. 20, 93–99 (2002).Google Scholar
  42. 42.
    Yu. F. Mikhailov, M. A. Grechko, O. A. Zhitkova, M. A. Zhurovich, A. V. Kutsenko, I. G. Lebo, J. Limpouch, A. A. Matsveiko, V. B. Rozanov, G. V. Sklizkov, A. N. Starodub, V. F. Tishkin, and A. M. Chekmarev, “Effect of a Preplus on Ablation-Pressure Smoothing in Laser Heating of Thin Foils,” J. of Russian Laser Research 28(4), 311–325 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Moscow State UniversityLeninskie gory, MoscowRussia
  2. 2.Moscow Institute of Radio Engineering and AutomationMoscowRussia

Personalised recommendations