Skip to main content
Log in

Interaction of high-power laser pulses with low-density targets in experiments with the PALS installation

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Numerical modeling of experiments on the interaction of high-power pulses with low-density porous media is considered. The experimental data were obtained by means of the PALS iodine laser (pulse energy up to 200 J and pulse duration of 0.4 ns). The original density of the porous medium varied from 2.25 to 18 µg/cm3. A new physico-mathematical model of such plasma is proposed, two-dimensional computations are performed, and good agreement between the calculated and experimental data is shown

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. I. Bokov, A. A. Bunatyan, A. A. Lykov, et al., “The Way to Reduce the Microtarget Sensitivity to Nonsymmetry of Laser Irradiation,” PMTF, No. 4, 20 (Novosibirsk, 1982).

  2. E. G. Gamaly, A. O. Fedyanin, I. G. Lebo, et al., “Nonlinear Stage in the Development of Hydrodynamic Instability in Laser Targets,” Laser and Particle Beams 8, 399–407 (1990).

    Article  Google Scholar 

  3. V. V. Ivanov, A. V. Kutsenko, I. G. Lebo, A. A. Matsveiko, Yu. A. Mikhailov, et al., “Anomalous Burnout of Thing Foils under Heating by Laser Radiation with High Brightness,” ZhETF 116, 1287–1299 (1999).

    Google Scholar 

  4. A. B. Iskakov, V. F. Tishkin, I. G. Lebo, J. Limpouch, K. Masek, and K. Rohlena, “Two-Dimencional Model of Thermal Smoothing of Laser Imprint in Double-Pulse Plasma,” Phys. Review E 61(1), 842–847 (2000).

    Article  Google Scholar 

  5. J. H. Nuckolls, A. R. Theissen, and G. H. Dahlbacka, US Patent No. 4376752 (15 March 1983).

  6. I. G. Lebo, V. F. Rozanov, and V. F. Tishkin, “Hydrodynamic Instability and Target Design,” Laser and Particle Beams 12(3), 361–369 (1994).

    Article  Google Scholar 

  7. S. Yu. Gus’kov and V. B. Rozanov, “Interaction between Laser Radiation and Porous Medium and Nonequilibrium Plasma Formation,” Kvantovaya elektronika 24(8), 715–720 (1997).

    Google Scholar 

  8. V. B. Rozanov, “On Spherical Compression of the Targets with Thermonuclear Fuel, if Two Laser Beams are Used for Irradiation,” UFN 174(4), 371–382 (2005).

    Article  Google Scholar 

  9. M. Dunne, M. Borghesi, A. Ivase, M. Jones, R. Tailor, O. Willi, R. Gibson, S. Oldman, J. Mark, and R. Watt, “Evaluation of Foam Buffer Target Design for Spatially Uniform Ablation of a Laser-Irradiated Target,” Phys. Rev. Lett. 75(21), 3858–3861 (1995).

    Article  Google Scholar 

  10. J. Limpoch, N. N. Demchenko, S. Yu. Gus’kov, M. Kalal, A. Kasperczuk, et al., “Laser Interaction with Plastic Foam-Metallic Foil Layered Targets,” Plasma Phys. Control. Fusion 46, 1831–1846 (2004).

    Article  Google Scholar 

  11. A. E. Bugrov, I. N. Burdonskii, V. V. Gavrilov, et al., “Interaction between Powerful Laser Radiation and Low-Dense Porous Mediums,” ZhETF 111, 903–918 (1997).

    Google Scholar 

  12. T. Afshar-rad, M. Desselberger, M. Dunne, J. Edwards, J. M. Foster, D. Hoarty, M. W. Jones, S. J. Rose, P. A. Rosen, R. Taylor, and O. Willi, “Supersonic Propagation of an Ionization Front in Low Density Foam Targets Driven by Thermal Radiation,” Phys. Rev. Lett. 73, 74–77 (1994).

    Article  Google Scholar 

  13. J. A. Koch, K. G. Estebrook, J. D. Bauer, C. A. Back, A. M. Rubenchik, et al., “Time-Resolved X-ray Imaging of High-Power Laser-Irradiated Underdense Silica Aerogels and Agar Foams,” Phys. Plasmas 2, 3820–3831 (1995).

    Article  Google Scholar 

  14. A. E. Bugrov, I. N. Burdonskiy, I. K. Fasakhov, V. V. Gavrilov, A. Yu. Goltsov, A. I. Gromov, A. I. Kondrashov, N. G. Kovalskiy, S. F. Medovshchikov, V. G. Nikolaevskiy, V. M. Petryakov, and E. V. Zhuzhukalo, “Laser-Plasma Interaction in Experiments with Low-Density Volume-Structured Media on the “Mishen” Facility,” in Proc. of SPIE, Ed. by O. N. Krokhin, S. Yu. Guskov, and Yu. A. Merkuliev (Bellingham, WA, 2003), vol. 5228.

    Google Scholar 

  15. N. G. Borisenko and Yu. A. Merkul’ev, “The Targets with Microheterogeneous Structure for Spherical Irradiation,” in Works of FIAN (Nauka, Moscow, 1992), vol. 220, pp. 28–46 [in Russian].

    Google Scholar 

  16. J. Falconer, W. Nazarov, and C. J. Horsfield, “In Situ Production of Very Low Density Microporous Polymeric Foams,” J. Vac. Sci. Technol. A13, 1941 (1995).

    Google Scholar 

  17. A. E. Bugrov, I. N. Burdonskii, V. V. Gavrilov, et al., “Processes of Absorption and Dispersion of Powerful Laser Radiation in Low-Dense Porous Mediums,” ZhETF 115(3), 805–818 (1999).

    Google Scholar 

  18. N. G. Borisenko, Yu. A. Merkuliev, and A. I. Gromov, “Microheterogeneous Targets — a New Challenge in Technology, Plasma Physics, and Laser Interaction with Matter,” J. Moscow Phys. Soc. 4(3), 247–273 (1994).

    Google Scholar 

  19. W. Nazarov, “An In-Situ Polymerization Technique for the Production of Foam-Filled Laser Targets,” J. Moscow Phys. Soc. 8, 251–255 (1998).

    Google Scholar 

  20. I. G. Lebo, I. V. Popov, V. B. Rozanov, and V. F. Tishkin, “Numerical Simulation of Thermal Equalizing and Hydrodynamic Compensation in the Targets ‘Laser Hotbed’,” Kvantovaya elektronika, No. 22, 1257–1261 (1995).

  21. A. B. Iskakiv, I. G. Lebo, V. B. Rozanov, and V. F. Tishkin, “On the Neutron Yield in the Two-Beam Scheme of Laser Heating and Compression of Spherical Shell Targets with a Low-Density Coating,” Journal of Russian Laser Research 22(1), 82–89 (2001).

    Article  Google Scholar 

  22. S. Yu. Gus’kov, N. N. Demchenko, V. B. Rozanov, et al., “Symmetric Compression of the Targets ‘Laser Hotbed’ by Little Number of Laser Beams,” Kvantovaya elektronika 33, 95–104 (2003).

    Article  Google Scholar 

  23. S. Yu. Gus’kov, N. V. Zmitrenko, I. V. Popov, V. B. Rozanov, and V. F. Tishkin, “2D Energy Transport and Plasma Generation, if the Laser Beam Acts onto the Substance with Subcritical Density,” Kvantovaya elektronika 30(7), 601–605 (2000).

    Article  Google Scholar 

  24. S. V. Bondarenko, S. G. Garanin, G. A. Kirillov, Yu. F. Kir’yanov, and G. G. Kochemasov, “Energy Transport in Tridimensional-Structured Medium,” Kvantovaya elektronika 31(1), 39–44 (2001).

    Article  Google Scholar 

  25. A. A. Akunets, N. G. Borisenko, D. Klir, V. Kmetik, E. Krousk, I. Limpoukh, K. Masek, Yu. A. Merkul’ev, V. G. Pimenov, M. Pfeier, I. Ulshmid, and A. M. Kholenkov, “Features of Penetration of Laser Radiation with Wave Length of 0.438 µm and Intensity of (3−7) × 1014 W/cm2 through Subcritical Plasma of Polymeric Aerogels,” Preprint No. 8 (FIAN, Moscow, 2007).

    Google Scholar 

  26. K. Jungwirth, A. Cejnarova, L. Juha, B. Kralicova, J. Krasa, et al., “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–3006 (2001).

    Article  Google Scholar 

  27. S. I. Braginskii, Transport Phenomenon in Plasma. Problems of Plasma Theory (Gosatomoizdat, Moscow, 1963), issue 1 [in Russian].

    Google Scholar 

  28. I. G. Lebo and V. F. Tishkin, Research of Hydrodynamical Instability in the Problems of Laser Thermonuclear Fusion (Nauka, Fizmatlit, Moscow, 2006), pp. 208–218 [in Russian].

    Google Scholar 

  29. Ya. B. Zel’dovich and M. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Monograph (Nauka, Fizmatlit, Moscow, 1966) [in Russian].

    Google Scholar 

  30. Yu. V. Afanas’ev, E. G. Gamalii, and V. B. Rozanov, “The Basic Equations of Laser Plasma Dynamics and Kinetics,” in Works of FIAN (Nauka, Moscow, 1982), vol. 134, No. 10 [in Russian].

    Google Scholar 

  31. R. M. More et al., Phys. Fluids 31(10), 3059 (1988).

    Article  MATH  Google Scholar 

  32. E. Aristova, A. Iskakov, I. Lebo, and V. Tishkin, “2D-Lagrangian Code LATRANT for Simulation Radiation Gas Dynamic Problems,” in Proc. of SPIE. ECLIM 2002: 27th European Conf. on Laser Interaction with Matter. 7–11 October 2002 (Moscow, 2003), vol. 5228, pp. 131–141.

    Google Scholar 

  33. A. B. Iskakov, I. G. Lebo, I. V. Popov, V. B. Rozanov, and V. F. Tishkin, The Way to Consider Laser Beams Refraction under Simulation of 2D-Heterogeneous Compression of the Targets. Short Reports on Physics (FIAN, Moscow, 1997), Nos. 1–2, pp. 28–35 [In Russian].

    Google Scholar 

  34. I. G. Lebo, N. N. Demchenko, A. B. Iskakov, et al., “Simulation of High-Intensity Laser-Plasma Interactions by Use of 2D Lagrangian Code ‘ATLANT-HE’,” Laser and Particle Beams, No. 22, 267 (2004).

  35. A. I. Lebo, I. G. Lebo, and D. Batani, “The Relationship between the Pressure in Compressed Condensed Substance and Parameters of High-Power Laser Pulses,” Kvantovaya elektronika 38(8), 747–754 (2008).

    Article  Google Scholar 

  36. Yu. V. Afanas’ev, E. G. Gamalii, N. N. Demchenko, and V. B. Rozanov, “Laser Radiation Absorption by Spherical Target by Considering the Refraction and Developed Hydrodynamics,” in Works of FIAN (Nauka, Moscow, 1982), vol. 134, pp. 32–41 [in Russian].

    Google Scholar 

  37. S. Z. Belen’kii and E. S. Fradkin, “Theory of Turbulent Mixing,” in Works of FIAN (Moscow, 1965), vol. 29, p. 207 [in Russian].

    Google Scholar 

  38. A. M. Khalenkov, N. G. Borisenko, V. N. Kondrashov, Yu. A. Merkul’ev, J. Limpouch, and V. G. Pimenov, “Experience of Microheterogeneous Target Fabrication to Study Energy Transport in Plasma near Critical Density,” Laser and Particle Beams 24(2) (2005).

  39. I. V. Akimova, N. G. Borisenko, A. I. Gromov, A. M. Khalenkov, V. N. Kondrashov, J. Limpouch, E. Krousky, J. Kuba, K. Masek, Yu. A. Merkul’ev, W. Nazarov, V. G. Pimenov, “Regular 3-D Networks for Controlled Energy Transport Studies in Laser Plasma Near Critical Density,” Fusion Science and Technology 49(4), 676–685 (2006).

    Google Scholar 

  40. V. Rozanov, D. Brishpoltsev, G. Vergunova, et al., “Energy Transfer in Low-Density Porous Targets Doped by Heavy Elements. The Fifth Intern. Conf. on Inertial Fusion Sciences and Applications (IFSA2007),” Journ. of Physics: Conference Series 112, 022010 (2008).

    Article  Google Scholar 

  41. J. Limpouch, A. B. Iskakov, K. Masek, K. Rohlena, I. G. Lebo, and V. F. Tishkin, “Transverse Structures in Corona of Nonuniformly Irradiated Solid Targets,” Laser and Particle Beans, No. 20, 93–99 (2002).

  42. Yu. F. Mikhailov, M. A. Grechko, O. A. Zhitkova, M. A. Zhurovich, A. V. Kutsenko, I. G. Lebo, J. Limpouch, A. A. Matsveiko, V. B. Rozanov, G. V. Sklizkov, A. N. Starodub, V. F. Tishkin, and A. M. Chekmarev, “Effect of a Preplus on Ablation-Pressure Smoothing in Laser Heating of Thin Foils,” J. of Russian Laser Research 28(4), 311–325 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Lebo.

Additional information

Original Russian Text © A.I. Lebo, I.G. Lebo, 2009, published in Matematicheskoe Modelirovanie, 2009, Vol. 21, No. 1, pp. 75–91.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebo, A.I., Lebo, I.G. Interaction of high-power laser pulses with low-density targets in experiments with the PALS installation. Math Models Comput Simul 1, 724–738 (2009). https://doi.org/10.1134/S2070048209060076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048209060076

Keywords

Navigation