Advertisement

The interpolation property of the Runge-Kutta methods

  • L. M. Skvortsov
Article
  • 44 Downloads

Abstract

The Runge-Kutta methods possessing the interpolation property, i.e., methods in which all coefficients belong to the interval [0, 1] are studied. Explicit and implicit methods of up to the fifth order inclusive that satisfy or almost satisfy the interpolation condition are considered.

Keywords

Collocation Method Runge Kutta Method Order Method Interpolation Property Interpolation Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Hairer, S. P. Norsett, and G. Wanner, Solving of Ordinary Differential Equations. Nonstiff Problems (Mir, Moscow, 1990; Springer Verlag, 1993).Google Scholar
  2. 2.
    J. R. Dormand and P. J. Prince, “A Family of Embedded Runge-Kutta Formulae,” J. Comp. Appl. Math. 6(1), 19–26 (1980).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    E. Hairer and G. Wanner, Solving of Ordinary Differential Equations. Stiff and Differential-Algebraic Problems (Mir, Moscow, 1999; Springer Verlag, 1991).Google Scholar
  4. 4.
    L. M. Skvortsov, “Diagonal-Implicit Runge-Kutta FSAL-Methods for Stiff Problems,” Matematicheskoe modelirovanie 14(2), 3–17 (2002).MathSciNetGoogle Scholar
  5. 5.
    L. M. Skvortsov, “Diagonal-Implicit Runge-Kutta methods for Stiff Problems,” Zh. vychisl. matem. i matem. fiz. 46,No. 12, 2209–2222 (2006).MathSciNetGoogle Scholar
  6. 6.
    N. N. Kalitkin and S. L. Panchenko, “Optimal Schemes for Stiff Non-Autonomous Systems,” Matematicheskoe modelirovanie 11(6), 52–81 (2006).MathSciNetGoogle Scholar
  7. 7.
    E. A. Al’shina, E. M. Zaks, and N. N. Kalitkin, “Optimal Parameters of Explicit Runge-Kutta Schemes of Low Order,” Matematicheskoe modelirovanie 18(2), 3–15 (2006).MathSciNetGoogle Scholar
  8. 8.
    O. S. Kozlov, D. E. kondakov, L. M. Skvortsov, et al., Program Complex “Simulation in Technical Devices,” Available from http://model.exponenta.ru/mvtu/20050615.html.
  9. 9.
    M. E. Hosea and L. F. Shampine, “Analysis and Implementation of TR-BDF2,” Appl. Numer. Math. 20(1–2), 21–37 (1996).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    O. S. Kozlov, L. M. Skvortsov, and V. V. Khodakovskii, Solving of Differential and Differential-Algebraic Equations in Program Complex “MBTU,” Available from http://model.exponenta.ru/mvtu/20051121.html.

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • L. M. Skvortsov
    • 1
  1. 1.Bauman State Technical UniversityMoscowRussia

Personalised recommendations