Skip to main content
Log in

Anisotropic turbulence decay in a far momentumless wake in a stratified medium

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A new numerical model is constructed of turbulent wake dynamics behind bodies of revolution in a stably stratified medium based on a semiempirical third-order turbulence model. The employed differential transport equations of all triple correlations of velocity field oscillations, written with allowance for fourth-order cumulants and improved algebraic representations of joint triple correlations of velocity and density fluctuations, enable the comprehensive description of an anisotropic turbulence decay in a far momentumless wake in a stratified medium

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Schooley and R.W. Stewart, “Experiments with a Self-Propelled Body Submerged in a Fluid with Vertical Density Gradient,” J. Fluid Mech. 15(1), 83–96 (1963).

    Article  MATH  Google Scholar 

  2. A. T. Onufriev, “Turbulent Wake in a Stratified Medium,” PMTF No. 5, 68–72 (1970).

  3. C. E. Merrit, “Wake Growth in Stratified Flow,” AIAA J. 12(7), 940–949 (1974).

    Article  Google Scholar 

  4. W. S. Lewellen, M. E. Teske, and C. D. Donaldson, “Examples of Variable Density Flows Computed by Second-Order Closure Description of Turbulence,” AIAA J. 14, 382–387 (1976).

    Article  Google Scholar 

  5. O. F. Vasiliev, B. G. Kuznetsov, Y. M. Lytkin, and G. G. Chernykh, “Development of the Turbulent Mixed Region in a Stratified Medium,” in Proceedings of International Seminar “Turbulent Buoyant Convection” Aug. 30–Sept. 4, Dubrovnic, Yugoslavia, 1976.

  6. J. T. Lin and Y. H. Pao, “Wakes in Stratified Fluids,” Annu. Rev. Fluid Mech. 11, 317–336 (1979).

    Article  Google Scholar 

  7. S. Hassid, “Collapse of Turbulent Wakes in Stable Stratified Media,” J. Hydronautics 14, 25–32 (1980).

    Article  Google Scholar 

  8. O. M. Belotserkovskii, Numerical Modeling in Continuum Mechanics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  9. A. Yu. Danilenko, V. I. Kostin, and A. I. Tolstykh, “On Implicit Algorithm for Calculating the Flows of Homogeneous and Non-Homogeneous Fluids,” Preprint of the Computing Center of the USSR Academy of Sciences, Moscow, 1985.

  10. G. S. Glushko, A. G. Gumilevskii, and V. I. Polezhayev, “Evolution of Turbulent Wakes behind Globular Bodies in Stably Stratified Media,” Izv. Akad. Nauk SSSR, MZhG No. 1, 13–22 (1994).

  11. O. F. Voropaeva and G. G. Chernykh, “Numerical Model for Dynamics of Momentumless Trubulent Wake in Pycnocline,” PMTF 38(3), 69–86 (1997).

    MATH  Google Scholar 

  12. O. F. Voropaeva and G. G. Chernykh, “Internal Waves Generated by Momentumless Trubulent Wake in a Linearly Stratified Medium,” Mathematical modeling 10(6), 75–89 (1998).

    Google Scholar 

  13. G. G. Chernykh and O. F. Voropaeva, “Numerical Modeling of Momentumless Turbulent Wake Dynamics in a Linearly Stratified Medium,” Computers and Fluids., 28(3), 281–306 (1999).

    Article  MATH  Google Scholar 

  14. D. G. Dommermuth, J. W. Rottman, G. E. Innis, and E. A. Novikov, “Numerical Simulation of a Momentumless Wake in a Weakly Stratified Fluid,” abstract FH.003 In Proceedings of American Physical Society, 54th Annual Meeting of the Division of Fluids Dynamics, November 18–20, 2001, United States (2001).

  15. Spedding G.R. Anisotropy in turbulence profiles of stratified wakes // Phys. Fluids 13(8), 2361–2372 (2001).

    Article  Google Scholar 

  16. M. J. Gourlay, S. C. Arendt, B. C. Fritts, and J. Werne, “Numerical Modelling of Initially Turbulent Wakes with Net Momentum,” Phys. Fluids, 13(12), 3783–3802 (2001).

    Article  Google Scholar 

  17. O. F. Voropaeva, B. B. Ilyushin, and G. G. Chernykh, “Numerical Modeling of Far Momentumless Trubulent Wake in a Linearly Stratified Medium,” DAN 386(6), 756–760 (2002).

    Google Scholar 

  18. P. Meunier and G. Spedding, “Stratified Propelled Wakes,” J. Fluid Mech., 552, 229–256 (2006).

    Article  MATH  Google Scholar 

  19. O. F. Voropaeva, B. B. Ilyushin, and G. G. Chernykh, “Anisotropic Turbulence Decay in a Far Momentumless Trubulent Wake in a Linearly Stratified Medium” // Mathematical modeling 15(1), 101–110 (2003).

    MATH  Google Scholar 

  20. O. F. Voropaeva, B. B. Ilyushin, and G. G. Chernykh, “Numerical Modeling of a Far Momentumless Trubulent Wake in a Linearly Stratified Medium using Modified Equation of Dissipation Velocity Transfer,” Thermal Physics and Air Mechanics, 10(3), 389–400 (2003).

    Google Scholar 

  21. O. F. Voropaeva, “Numerical Models of Momentumless Trubulent Wake Dynamics in a Stably Stratified Medium,” Computational Technologies 9(4), 15–41 (2004).

    MATH  Google Scholar 

  22. G. G. Chemykh and O. F. Voropaeva, “Numerical Models of Second- and Third-Order of the Momentumless Turbulent Wake Dynamics in a Linearly Stratified Medium,” RJNAMM (in print).

  23. Methods for Turbulent Flows Calculation (ed. by V. Kollman) (Mir, Moscow, 1984) [in Russian].

    Google Scholar 

  24. W. Rodi, “Examples of Calculation Methods for Flow and Mixing in Stratified Fluids,” J. Geophys. Res., 92(C5), 5305–5328 (1987).

    Article  Google Scholar 

  25. B. J. Daly and F. H. Harlow, “Transport Equations of Turbulence,” J. Phys. Fluids 13, 2634–2649 (1970)

    Article  Google Scholar 

  26. M. M. Gibson and B. E. Launder, “On the Calculation of the Horizontal, Turbulent, Free Shear Flows under Gravitational Influence,” J. Heat Transfer. Trans. ASME, No. 98C, 81–87 (1976).

  27. M. M. Gibson and B. E. Launder, “Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer,” J. Fluid Mech. 86, 491–511 (1978).

    Article  MATH  Google Scholar 

  28. B. B. Ilyushin, “Higher-Moment Diffusion in Stable Stratification,” in Closure Strategies for Turbulent and Transition Flows (Cambridge Univ. Press. Cambridge, 2002).

  29. A. F. Kurbatskii, Modeling Nonlocal Transfer of Turbulent Momentum and Heat (Nauka, Sib. Division, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  30. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Gidrometeoizdat, St. Petersburg 1992).

    Google Scholar 

  31. B. E. Launder, Heat and Mass Transport. Turbulence. Chapter 6. Topics in Applied Physics (Ed. by P. Bradshow), Volume 12. (Springer Verlag., Berlin, Heidelberg,1976).

    Google Scholar 

  32. O. F. Voropaeva, “Hierarchy of Semi-Empirical Models of Second- and Third-Order Turbulence in the Calculations of Momentumless Wakes behind Solids of Revolution,” Mathematical modeling 19(3), 29–51 (2007).

    MATH  MathSciNet  Google Scholar 

  33. N. V. Aleksenko and V. A. Kostomakha, “Experimental Study of Axially Symmetric Momentumless Turbulent Jet Flow,” PMTF, No.1, 65–69 (1987).

  34. O. F. Voropaeva, “Numerical Modeling of Far Momentumless Axially Symmetrical Turbulent Wake,” Computational Technologies 8(2), 36–52 (2003).

    MathSciNet  Google Scholar 

  35. S. Hassid, “Similarity and Decay Laws of Momentumless Wakes,” Phys. Fluids., 23(2), 404, 405 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.F. Voropaeva, 2008, published in Matematicheskoe Modelirovanie, 2008, Vol. 20, No. 10, pp. 23–38.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voropaeva, O.F. Anisotropic turbulence decay in a far momentumless wake in a stratified medium. Math Models Comput Simul 1, 605–619 (2009). https://doi.org/10.1134/S207004820905007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004820905007X

Keywords

Navigation