Skip to main content
Log in

Formation and destruction of erythrocyte rouleau in a vessel with local bulge

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A mathematical model of aggregation and destruction of erythrocyte clots in the shear flow is constructed. Calculations show the influence of shear stresses in a blood flow on the mean dimension of clots. It is also shown that the sinuses of aneurysms create conditions for formation of large agglomerates, which can result in thrombosis of a blood vessel under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Lou and W. J. Yang, “A Computer Simulation of the Blood Flow in the Aortic Bifurcation with Flexible Walls,” in Proceedings of the ASCE Engineering Mechanics Speciality Conference “Mechanics Computing in 1990’s and Beyond”, Ohio, 1991, Ed. by H. Adeli and R. Sierakowski (ASCE, New York, 1991), vol. 1, pp. 544–548.

    Google Scholar 

  2. G. G. Ferguson, “Physical Factors in the Initiation, Growth and Rupture of Human Intracranial Saccular Aneurysms,” J. Neurosurg. 37, 666–676 (1972).

    Google Scholar 

  3. W. E. Stehbens, “Flow Disturbances in Glass Models of Aneurysms at Low Reynolds Numbers,” Q. J. Exp. Physiol. 59, 167–174 (1974).

    Google Scholar 

  4. H. J. Steiger, “Pathophysiology of Development and Rupture of Cerebral Aneurysms,” Acta Neurochir. 48, 11–23 (1990).

    Google Scholar 

  5. K. N. T. Kayembe, M. Sasahara, and F. Nazama, “Cerebral Aneurysms and Variations of the Circle of Willis,” Stroke 15, 846–850 (1984).

    Google Scholar 

  6. W. E. Stenbens, “Etiology of Intracranial Berry Aneurysm,” J. Neurosurg. 70, 823–831.

  7. S. Ahmed and D. P. Giddens, “Pulsatile Poststenotic Flow Studies with Laser Doppler Anemometry,” J. Biomech. 17, 695 (1984).

    Article  Google Scholar 

  8. M. Ojha, R. S. Cobbold, K. W. Johnston, and R. L. Hummel, “Pulsatile Flow Through Constricted Tubes: An Experimental Investigation Using Photochromic Tracer Methods,” J. Fluid Mech. 203, 173 (1989).

    Article  Google Scholar 

  9. M. Ojha, R. S. Cobbold, K. W. Johnston, and R. L. Hummel, “Detailed Visualization of Pulsatile Flow Fields Produced by Modelled Arterial Stenoses,” J. Biomed. Eng. 12, 463–469 (1990).

    Article  Google Scholar 

  10. S. Chien, “Physiological and Pathological Significance of Hemorheology,” in Clinical Hemorheology, Ed. by S. Chien (Martinus Nijhoff, Dordrecht, 1987), pp. 125–164.

    Google Scholar 

  11. S. Chien, S. A. Luse, K. M. Jan, et al., “Effects of Macromolecules on the Rheology and Ultrastructure of Red Cells Suspensions,” in Proceedings of the 6th European Conference on Microcirculation, Aalborg, 1970, Ed. by J. Ditzel and D. H. Lewis (S. Karger, Basel), pp. 29–34.

  12. S. Chien, “Clumping (Reversible Aggregation and Irreversible Agglutination) of Blood Cellular Elements,” Thromb. Res. 8(Suppl. II), 189–202 (1976).

    Article  Google Scholar 

  13. S. Chien, “Electrochemical Interaction and Energy Balance in Red Blood Cell Aggregation,” in Topics in Bioelectricity and Bioenergetics, Ed. By G. Milazzo (Wiley, New York, 1981), vol. 4, pp. 73–112.

    Google Scholar 

  14. A. P. Gast and L. Leibler, “Interaction of Sterically Stabilized Particles Suspended in a Polymer Solution,” J. Macromol. 19, 686–691 (1986).

    Article  Google Scholar 

  15. J. F. Joanny, L. Leibler, and P. G. De Gennes, “Effects of Polymer Solutions on Colloid Stability,” J. Polym. Sci. 17, 1030–1084 (1979).

    Google Scholar 

  16. S. Chien, “Biophysical Behavior of Red Cells in Suspensions,” in The Red Blood Cell, Ed. by D. M. Surgenor (Academic Press, New York, 1975), pp. 1031–1133.

    Google Scholar 

  17. M. Elimelech, J. Gregory, X. Jia, and R.A. Williams, Particle Deposition and Aggregation: Measurement, Modeling and Simulation (Butterworth-Heinemann, Oxford, 1995), chap. 6, pp. 157–202.

    Book  Google Scholar 

  18. P. A. Shamlou and N. Titchener-Hooker, “Turbulent Aggregation and Breakup of Particles in Liquids in Stirred Vessels,” in Processing of Solid-Liquid Suspensions, Ed. by P. A. Shamlou (Butterworth-Heinemann, Oxford, 1993), pp. 1–25.

    Google Scholar 

  19. K. Muhle, “Floc Stability in Laminar and Turbulent Flow,” in Coagulation and Flocculation, Theory and Applications, Ed. by B. Dobias (M. Dekker, New York, 1993), pp. 355–390.

    Google Scholar 

  20. A. P. Shortland, R. A. Black, J. C. Jarvis, et al., “Formation and Travel of Vortices in Model Ventricles: Application to the Design of Skeletal Muscle Ventricles,” J. Biorheol. 29(4), 501–511 (1996).

    Google Scholar 

  21. M. Hasegawa, “Rheological Properties and Wall Structures of Large Veins,” J. Biorheol. 20(5), 531–545 (1983).

    MathSciNet  Google Scholar 

  22. B. Lim, P. J. Bascom, and R. S. C. Cobbold, “Simulation of Red Cell Aggregation in Shear Flow,” J. Biorheol. 34(6), 425–441 (1997).

    Google Scholar 

  23. Y. W. Yuan and K. K. Shung, “Echoicity of Whole Blood,” J. Ultrasound Med. 8, 425–434 (1989).

    Google Scholar 

  24. L. Y. L. Mo, R. S. C. Cobbold, C. Gutt, et al., “Non-Newtonian Behavior of Whole Blood in a Large Diameter Tube,” J. Biorheol. 28(5), 421–427 (1991).

    Google Scholar 

  25. R. E. N. Shehada, R. S. C. Cobbold, and L. Y. L. Mo, “Aggregation Effects in Whole Blood: Influence of Time and Shear Rate Measurement Using Ultrasound,” J. Biorheol. 31(1) 115–135 (1994).

    Google Scholar 

  26. T. Murata and T. W. Secomb, “Effects of Shear Rate on Rouleau Formation in Simple Shear Flow,” J. Biorheol. 25(1–2), 113–122 (1988).

    Google Scholar 

  27. A. A. Samarskii, An Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  28. M. Kolb and R. Jullien, “Chemically Limited Versus Diffusion Limited Aggregation,” J. Phys. Lett. 45, 977–981 (1984).

    Article  Google Scholar 

  29. P. Mills, “Non-Newtonian Behavior of Flucculated Suspensions,” J. Phys. Lett. 46, 301–309 (1985).

    Article  Google Scholar 

  30. P. Snabre, M. Bitbol, and P. Mills, “Cell Disaggregation Behavior in Shear Flow,” J. Biophys. 51, 795–807 (1987).

    Article  Google Scholar 

  31. P. Meakin, “Fractal Aggregates and Their Fractal Measures,” in Phase Transitions and Critical Phenomena, Ed. by -. Domb and J. L. Lebowitz (Academic Press, London, 1988), vol. 12.

    Google Scholar 

  32. T. Fabry, “Mechanism of Erythrocyte Aggregation and Sedimentation,” J. Blood 70, 1572–1576 (1987).

    Google Scholar 

  33. G. Cloutier, Z. Qin, L. G. Durand, and B. G. Teh, “Power Doppler Ultrasound Evaluation of the Shear Rate and Shear Stress Dependencies of Red Blood Cell Aggregation,” IEEE Trans. Biomed. Eng. 43, 441–450 (1996).

    Article  Google Scholar 

  34. A. L. Copley, R. G. King, and C. R. Huang, “Erythrocyte Sedimentation of Human Blood at Varying Shear Rates,” J. Microcirculation, Ed. By J. Grayson and W. Zingg (Plenum Press, New York), 133–134 (1976).

    Google Scholar 

  35. H. Schmid-Schonberg, P. Gaehtgens, and H. Hirsch, “On the Shear Rate Dependence of Red Cell Aggregation in Vitro,” J. Clin. Invest. 47, 1447–1454 (1968).

    Article  Google Scholar 

  36. Y. I. Cho and K.R. Kensey, “Effects of the Non-Newtonian Viscosity of the Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows,” J. Biorheol. 28(3–4), 241–262 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Kornelik.

Additional information

Original Russian Text © S.E. Kornelik, E.K. Borzenko, A.N. Grishin, M.A. Bubenchikov, V.I. Stolyarov, 2008, published in Matematicheskoe Modelirovanie, 2008, Vol. 20, No. 1, pp. 3–5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornelik, S.E., Borzenko, E.K., Grishin, A.N. et al. Formation and destruction of erythrocyte rouleau in a vessel with local bulge. Math Models Comput Simul 1, 1–10 (2009). https://doi.org/10.1134/S2070048209010013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048209010013

Keywords

Navigation