Recursion over partitions

Research Articles


The paper demonstrates how to apply a recursion on the fundamental concept of number. We propose a generalization of the partitions of a positive integer n, by defining new combinatorial objects, namely sub-partitions. A recursive formula is suggested, designated to solve the associated enumeration problem. It is highlighted that sub-partitions provide a good language to study rooted phylogenetic trees.

Key words

partition sub-partition phylogenetic tree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. E. Andrews, The Theory of Partitions (Cambridge Univ. Press, Cambridge, 1998).MATHGoogle Scholar
  2. 2.
    A. A. Fraenkel, Integers and Theory of Numbers, Scripta Mathematica (NY, 1955).MATHGoogle Scholar
  3. 3.
    B. Irina et al., “Quantum control of exiton states in clusters of resonantly interacting fluorescent particles using biharmonic laser pulses,” Phys. Rev. B 74, 165329–165341 (2006).CrossRefGoogle Scholar
  4. 4.
    A. Khrennikov, M. Klein and T. Mor, “Quantum integers,” AIP Conf. Proc. 1232, 299–305 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Klein and D. Shadmi, “Organic Mathematics,” Int. J. Pure Appl. Math. 49(3), 329–340 (2008). See also,M. Klein and D. Shadmi, “Organic Mathematics,” 5th Int. Conf. on Quantum Theory Reconsideration of Foundations, Vaxjo University (2009).MATHMathSciNetGoogle Scholar
  6. 6.
    C. Semple and M. Steel, Phylogenetics (Oxford Univ. Press, 2003).MATHGoogle Scholar
  7. 7.
    N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, on-line at (2007).Google Scholar
  8. 8.
    R. Stanley, Enumerative Combinatorics, vol. 1 (Wadsworth and Brooks/Cole, Pacific Grove, CA, 1986; second ed. Cambridge Univ. Press, Cambridge, 1996).CrossRefMATHGoogle Scholar
  9. 9.
    L. Takacs, “Enumeration of rooted trees and forests,” Math. Sci. 18, 1–10 (1993).MATHMathSciNetGoogle Scholar
  10. 10.
    G. S. Brown, Laws of Form (Bohmeier Verlag, 1969).MATHGoogle Scholar
  11. 11.
    A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer, Dordrecht, 1997).MATHGoogle Scholar
  12. 12.
    E. E. Rosinger and A. Khrennikov, “Beyond Archimedean Space-Time Structure”, Advances in Quantum Theory, AIP Conf. Proc. 1327, pp. 520–526 (Amer. Inst. Phys., New York, 2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Department of mathematicsOhalo CollegeKatzrinIsrael
  2. 2.International Center forMathematical Modeling in Physics, Engineering, Economics, and Cognitive Science, School of Computer SciencePhysics and Mathematics Linnaeus UniversityVaxjoSweden

Personalised recommendations