Advertisement

On a generalized p-adic Gibbs measure for Ising model on trees

Research Articles

Abstract

In this paper we consider a p-adic Ising model on an arbitraty tree. We show the uniqueness and boundedness of the p-adic Gibbs measure for the model. Moreover, we consider translational invariant and periodic generalized p-adic Gibbs measures for the model on the Cayley tree of order two.

Key words

tree Cayley trees Ising model configuration Gibbs measures p-adic numbers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Albeverio and W. Karwowski, “A random walk on p-adics the generators and its spectrum,” Stoch. Proc. Appl. 53, 1–22 (1994).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    P. M. Bleher, J. Ruiz and V. A. Zagrebnov, “On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice,” J. Stat. Phys. 79, 473–482 (1995).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    N. N. Ganikhodjayev and U. A. Rozikov, “Description of periodic extreme Gibbs measures of some lattice model on the Cayley tree,” Theor. Math. Phys. 111, 480–486 (1997).CrossRefGoogle Scholar
  4. 4.
    N. N. Ganikhodjayev, F. M. Mukhamedov and U. A. Rozikov, “Phase transitions in the Ising model on Z over the p-adic numbers,” UzbekMath. J. 4, 23–29 (1998).Google Scholar
  5. 5.
    D. Gandolfo, U. A. Rozikov and J. Ruiz, “On p-adic Gibbs measures for Hard Core model on a Cayley tree,” Markov Proc. Related Fields 18, 701–721 (2012).MathSciNetMATHGoogle Scholar
  6. 6.
    H.-O. Georgii, GibbsMeasures and Phase Transitions (W. de Gruyter, Berlin, 1988).Google Scholar
  7. 7.
    O. N. Khakimov, “On p-Adic Gibbs measures for Ising model with four competing interactions,” p-Adic Numbers Ultrametric Anal. Appl. 5(3), 194–203 (2013).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    M. Khamraev, F. Mukhamedov and U. Rozikov, “On the uniqueness of Gibbs measures for p-adic nonhomogeneous λ-model on the Cayley tree,” Lett.Math. Phys. 70, 17–28 (2004).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    M. Khamraev and F. Mukhamedov, “On p-adic λ-model on the Cayley tree,” J. Math. Phys. 45(11), 4025–4034 (2004).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer, Dordrecht, 1997).MATHGoogle Scholar
  11. 11.
    A. Yu. Khrennikov, F. M. Mukhamedov and J. F. F. Mendes, “On p-adic Gibbs measures of the countable state Potts model on the Cayley tree,” Nonlinearity 20, 2923–2937 (2007).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. Yu. Khrennikov and F. M. Mukhamedov, “On uniqueness of Gibbs measure for p-adic countable state Potts model on the Cayley tree,” Nonlin. Anal. Theor. Meth. Appl. 71, 5327–5331 (2009).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    N. Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta-Functions (Springer, Berlin, 1977).CrossRefMATHGoogle Scholar
  14. 14.
    F. M. Mukhamedov and U. A. Rozikov, “On Gibbs measures of p-adic Potts model on the Cayley tree,” Indag. Math. 15(1), 85–100 (2004).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    F. M. Mukhamedov, “On dynamical systems and phase transitions for q + 1-state p-adic Potts model on the Cayley tree,” Math. Phys. Anal. Geom. 16, 49–87 (2013).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    F. Mukhamedov, “On a recursive equation over a p-adic field,” Appl. Math. Lett. 20, 88–92 (2007).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    F. M. Mukhamedov, “On p-adic quasi Gibbs measures for q + 1-state Potts model on the Cayley tree,” p-Adic Numbers Ultrametric Anal. Appl. 2, 241–251 (2010).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    F. Mukhamedov, “Existence of p-adic quasi Gibbs measure for countable state Potts model on the Cayley tree,” J. Inequal. Apll. Geom. 104, (2012).Google Scholar
  19. 19.
    F. Mukhamedov and H. Akin, “Phase transitions for p-adic Potts model on the Cayley tree of order three,” J. Stat. Mech., P07014 (2013).Google Scholar
  20. 20.
    F. Mukhamedov, “On strong phase transitions for one dimensional countable state p-adic Potts model,” J. Stat. Mech., P01007 (2014).Google Scholar
  21. 21.
    U. A. Rozikov, “Representability of trees and some of their applications,” Math. Notes 72(4), 479–488 (2002).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    U. A. Rozikov, GibbsMeasures on Cayley Trees (World Sci. Publ., Singapore, 2013).CrossRefGoogle Scholar
  23. 23.
    W. H. Schikhof, Ultrametric Calculus (Cambridge Univ. Press, Cambridge, 1984).MATHGoogle Scholar
  24. 24.
    V. S. Vladimirov, I. V. Volovich and E. V. Zelenov, p-Adic Analysis and Mathematical Physics (World Sci. Publ., Singapore, 1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of mathematicsTashkentUzbekistan

Personalised recommendations