On ergodicity of p-adic dynamical systems for arbitrary prime p

  • E. Yurova
Short Communications


In this paper, we obtain necessary and sufficient conditions for ergodicity (with respect to the normalized Haar measure) of 1-Lipschitz p-adic functions that are defined on (and valuated in) the space ℤ p of p-adic integers for any prime p. The conditions are stated in terms of coordinate representations of p-adic functions.

Key words

ergodicity 1-Lipschitz p-adic functions p-adic numbers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Anashin and A. Khrennikov, Applied Algebraic Dynamics, de Gruyter Expositions in Math. 49 (Walter de Gruyter, Berlin, New York, 2009).MATHCrossRefGoogle Scholar
  2. 2.
    W. H. Schikhof, Ultrametric Calculus: An Introduction to p-Adic Analysis (Cambridge Univ. Press, Cambridge, 1984).MATHGoogle Scholar
  3. 3.
    A. Khrennikov and E. Yurova, “Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis,” J. Number Theory 133(2), 484–491 (2013).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    V. Anashin, “Ergodic transformations in the space of p-adic integers,” Proc. of 2nd Int. Conf. on p-Adic Mathematical Physics (Belgrade, Serbia and Montenegro, 15–21 Sep., 2005), AIP Conf. Proc. 826, 3–24 (AIP, Melville, New York, 2006).Google Scholar
  5. 5.
    V. S. Anashin, “Uniformly distributed sequences of p-adic integers,” Discrete Math. Appl. 12(6), 527–590 (2002).MathSciNetMATHGoogle Scholar
  6. 6.
    F. Durand and F. Paccaut, “Minimal polynomial dynamics on the set of 3-adic integers,” Bull. London Math. Soc. 41(2), 302–314 (2009).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.International Center for Mathematical Modelling in Physics and Cognitive SciencesLinnaeus UniversityVäxjöSweden

Personalised recommendations