Advertisement

Ultrametric model of mind, I: Review

Research Articles

Abstract

We mathematically model Ignacio Matte Blanco’s principles of symmetric and asymmetric being through use of an ultrametric topology. We use for this the highly regarded 1975 book of this Chilean psychiatrist and pyschoanalyst (born 1908, died 1995). Such an ultrametric model corresponds to hierarchical clustering in the empirical data, e.g. text. We show how an ultrametric topology can be used as a mathematical model for the structure of the logic that reflects or expresses Matte Blanco’s symmetric being, and hence of the reasoning and thought processes involved in conscious reasoning or in reasoning that is lacking, perhaps entirely, in consciousness or awareness of itself. In a companion paper we study how symmetric (in the sense of Matte Blanco’s) reasoning can be demarcated in a context of symmetric and asymmetric reasoning provided by narrative text.

Key words

reasoning symmetry logic model ultrametric topology hierarchy text analysis psycho-analysis bi-logic Matte Blanco 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Anashin and A. Khrennikov, Applied Algebraic Dynamics (De Gruyter, 2009).Google Scholar
  2. 2.
    W. L. Chafe, “The flow of thought and the flow of language,” in Syntax and Semantics: Discourse and Syntax, ed. by Talmy Givón, 12, 159–181 (Academic Press, 1979).Google Scholar
  3. 3.
    W. Chafe, Discourse, Consciousness, and Time: The Flow and Displacement of Conscious Experience in Speaking and Writing (Univ. Chicago Press, 1994).Google Scholar
  4. 4.
    P. Chakraborty, “Looking through newly to the amazing irrationals,” [arXiv: math.HO/0502049v1] (2005).Google Scholar
  5. 5.
    B. A. Davey and H. A. Priestley, Introduction to Lattices and Order (Cambridge Univ. Press, 2002).Google Scholar
  6. 6.
    A. Dijksterhuis and L. F. Nordgren, “A theory of unconscious thought,” Perspectives Psych. Science 1, 95–109 (2006).CrossRefGoogle Scholar
  7. 7.
    A. A. Ezhov, A. Yu. Khrennikov and S. S. Terentyeva, “Indications of a possible symmetry and its breaking in a many-agent model obeying quantum statistics,” Phys. Rev. E 77, 031126 (2008).MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. A. Giese and D. A. Leopold, “Physiologically inspired neural model for the encoding of face spaces,” Neurocomputing 65/66, 93–101 (2005).CrossRefGoogle Scholar
  9. 9.
    A. D. Gordon, Classification (Chapman and Hall, London, 1981).MATHGoogle Scholar
  10. 10.
    A. D. Gordon, “A review of hierarchical classification,” J. Royal Stat. Society A 150, 119–137 (1987).MATHCrossRefGoogle Scholar
  11. 11.
    A. Griffiths, L. A. Robinson and P. Willett, “Hierarchic agglomerative clustering methods for automatic document classification,” J. Documentation 40, 175–205 (1984).CrossRefGoogle Scholar
  12. 12.
    A. Khrennikov, Non-Archimedean Analysis, Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer, 1997).Google Scholar
  13. 13.
    A. Khrennikov, Information Dynamics in Cognitive, Psychological, Social and Anomalous Phenomena (Kluwer, 2004).Google Scholar
  14. 14.
    A. Yu. Khrennikov, “Toward an adequate mathematical model of mental space: Conscious/Unconscious dynamics on m-adic trees,” Biosystems 90(3), 656–675 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Yu. Khrennikov, “Modelling of psychological behavior on the basis of ultrametric mental space: Encoding of categories by balls,” p-Adic Numb. Ultr. Anal. Appl. 2(1), 1–20 (2010).MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Krasner, “Nombres semi-réels et espaces ultramétriques,” Comptes-Rendus de l’Académie des Sciences, Tome II, 219, 433–435 (1944).MathSciNetMATHGoogle Scholar
  17. 17.
    M. Krötzsch, “Generalized ultrametric spaces in quantitative domain theory,” Theor. Comp. Science 368, 30–49 (2006).MATHCrossRefGoogle Scholar
  18. 18.
    A. K. Jain and R. C. Dubes, Algorithms For Clustering Data (Prentice-Hall, Englwood Cliffs, 1988).MATHGoogle Scholar
  19. 19.
    A. K. Jain, M. N. Murty and P. J. Flynn, “Data clustering: a review,” ACM Comp. Surveys 31, 264–323 (1999).CrossRefGoogle Scholar
  20. 20.
    M. F. Janowitz, Ordinal and Relational Clustering (World Sci. Singapore, 2010).Google Scholar
  21. 21.
    R. Lauro-Grotto, “The unconscious as an ultrametric set,” American Imago, 64(4): 535–543, 2007.CrossRefGoogle Scholar
  22. 22.
    D. A. Leopold, I. V. Bondar and M. A. Giese, “Norm-based face encoding by single neurons in the monkey inferotemporal cortex,” Nature 442, 572–575 (2006).CrossRefGoogle Scholar
  23. 23.
    I. C. Lerman, Classification et Analyse Ordinale des Données (Dunod, 1981).Google Scholar
  24. 24.
    S. T. March, “Techniques for structuring database records,” ACMComp. Surveys 15, 45–79 (1983).MATHCrossRefGoogle Scholar
  25. 25.
    I. Matte Blanco, The Unconscious as Infinite Sets: An Essay in Bi-Logic, with a new foreword by Eric Rayner (Karnac, London, 1998), (Original version 1975).Google Scholar
  26. 26.
    R. McKee, Story — Substance, Structure, Style, and The Principles of Screenwriting (Methuen, 1999).Google Scholar
  27. 27.
    B. Mirkin, Mathematical Classification and Clustering (Kluwer, Dordrecht, 1996).MATHCrossRefGoogle Scholar
  28. 28.
    F. Murtagh, “On ultrametricity, data coding, and computation,” J. Classification 21, 167–184 (2004).MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    F. Murtagh, Correspondence Analysis and Data Coding with R and Java (Chapman & Hall/CRC, 2005a).Google Scholar
  30. 30.
    F. Murtagh, “Identifying the ultrametricity of time series,” Eur. Phys. J. B 43, 573–579 (2005b).CrossRefGoogle Scholar
  31. 31.
    F. Murtagh, “Symmetry in data mining and analysis: A unifying view based on hierarchy,” Proc. Steklov Inst. Math. 265(1), 177–198 (2009).MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    F. Murtagh, A. Ganz and S. McKie, “The structure of narrative: the case of film scripts,” Pattern Recogn. 42, 302–312 (2009).MATHCrossRefGoogle Scholar
  33. 33.
    F. Murtagh, “The correspondence analysis platform for uncovering deep structure in data and information,” Computer J. 53, 304–315 (2010a).CrossRefGoogle Scholar
  34. 34.
    F. Murtagh, “On ultrametric algorithmic information,” Computer J, 53, 405–416 (2010b).CrossRefGoogle Scholar
  35. 35.
    F. Murtagh, “Ultrametric model of mind, II: Application to text content analysis,” p-Adic Numb. Ultr. Anal. Appl. 4(3), 206–220 (2012).Google Scholar
  36. 36.
    S. Priess-Crampe and P. Ribenboim, “Logic programming and ultrametric spaces,” Rendiconti Mat., Serie VII, 19, 155–176 (1999).MathSciNetMATHGoogle Scholar
  37. 37.
    S. Priess-Crampe and P. Ribenboim, “Ultrametric spaces and logic programming,” J. Logic Prog. 42, 59–70 (2000).MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    R. Rammal, G. Toulouse and M. A. Virasoro, “Ultrametricity for physicists,” Rev. Mod. Phys. 58, 765–788 (1986).MathSciNetCrossRefGoogle Scholar
  39. 39.
    E. Rayner, Unconscious Logic: An Introduction to Matte Blanco’s Bi-Logic and Its Uses (Routledge, 1995).Google Scholar
  40. 40.
    W. H. Schikhof, Ultrametric Calculus (Cambridge Univ. Press, 1984). (Chapters 18, 19, 20, 21.)Google Scholar
  41. 41.
    A. K. Seda and P. Hitzler, “Generalized ultrametrics, domains and an application to computational logic,” IrishMath. Soc. Bull. 41, 31–43 (1998).MathSciNetGoogle Scholar
  42. 42.
    A. K. Seda and P. Hitzler, “Generalized distance functions in the theory of computation,” Computer J. 53, 443–464 (2010).CrossRefGoogle Scholar
  43. 43.
    H. A. Simon, The Sciences of the Artificial (MIT Press, Cambridge,MA, 1996).Google Scholar
  44. 44.
    C. J. van Rijsbergen, Information Retrieval Butterworths, (London, 1979). (2nd ed.).Google Scholar
  45. 45.
    A. C.M. van Rooij, Non-Archimedean Functional Analysis (Dekker, 1978).Google Scholar
  46. 46.
    R. Xu and D. C. Wunsch, Clustering (IEEE Comp. Soc. Press, 2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of Computer ScienceRoyal Holloway University of LondonEgham, SurreyEngland

Personalised recommendations