Periodic wavelets on the p-adic Vilenkin group

Research Articles

Abstract

Using the Walsh-Dirichlet type kernel, we construct periodic wavelets on the p-adic Vilenkin group. These wavelets are similar to the trigonometric wavelets which were introduced by C. K. Chui and H. N. Mhaskar [1]. Results on the corresponding fast algorithms for decomposition and reconstruction are also discussed.

Key words

Dirichlet kernel Cantor dyadic group Vilenkin groups periodic wavelets multiresolution analysis Walsh functions discrete Vilenkin-Chrestenson transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. K. Chui and H. N. Mhaskar, “On trigonometric wavelets,” Constr. Approx. 9, 167–190 (1993).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    B. I. Golubov, A. V. Efimov and V. A. Skvortsov, Walsh Series and Transforms (Kluwer, Dordrecht, 1991).CrossRefMATHGoogle Scholar
  3. 3.
    Yu. A. Farkov, “Wavelets and frames based on Walsh-Dirichlet type kernels,” Commun. Math. Appl. 1, 27–46 (2010).MathSciNetMATHGoogle Scholar
  4. 4.
    Yu. A. Farkov, “Discrete wavelets and the Vilenkin-Chrestenson transform,” Math. Notes 89(6), 871–884 (2011).CrossRefGoogle Scholar
  5. 5.
    Yu. A. Farkov, A. Yu. Maksimov and S. A. Stroganov, “On biorthogonal wavelets related to the Walsh functions,” Int. J.Wavelets Multiresol. Inf. Process. 9(3), 485–499 (2011).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Yu. A. Farkov and E. A. Rodionov, “Algorithms for wavelet construction on Vilenkin groups,” p-Adic Numb. Ultr. Anal. Appl. 3(3), 181–195 (2011).CrossRefGoogle Scholar
  7. 7.
    Yu.A. Farkov, U. Goginava and T. Kopaliani, “Unconditional convergence of wavelet expansion on the Cantor dyadic group,” Jaen J. Approx. 3(1), 117–133 (2011).Google Scholar
  8. 8.
    B. Fisher and J. Prestin, “Wavelets based on orthogonal polynomials,” Math. Computation 66(220), 1593–1618 (1997).CrossRefGoogle Scholar
  9. 9.
    W. C. Lang, “Orthogonal wavelets on the Cantor dyadic group,” SIAM J. Math. Anal. 27, 305–312 (1996).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    F. Schipp, W. R. Wade and P. Simon,Walsh Series: An Introduction to Dyadic Harmonic Analysis (Adam Hilger, Bristol and New York, 1990).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Mathematics DepartmentRussian State Geological Prospecting UniversityMoscowRussia

Personalised recommendations