Derivation of the Boltzmann equation and entropy production in functional mechanics

Research Articles

Abstract

A derivation of the Boltzmann equation from the Liouville equation by the use of the Grad limiting procedure in a finite volume is proposed. We introduce two scales of space-time: macro- and microscale and use the BBGKY hierarchy and the functional formulation of classical mechanics. According to the functional approach to mechanics, a state of a system of particles is formed from the measurements, which are rational numbers. Hence, one can speak about the accuracy of the initial probability density function in the Liouville equation. We assume that the initial data for the microscopic density functions are assigned by the macroscopic one (so one can say about a kind of hierarchy and subordination of the microscale to the macroscale) and derive the Boltzmann equation, which leads to the entropy production.

Key words

Loschmidt’s paradox Boltzmann equation Liouville equation BBGKY hierarchy Boltzmann-Grad limit 

References

  1. 1.
    N. N. Bogolyubov, Problems of Dynamic Theory in Statistical Physics (Gostekhizdat, Moscow-Leningrad, 1946; North-Holland, Amsterdam, 1962; Interscience, New York, 1962).Google Scholar
  2. 2.
    N. N. Bogolyubov, Kinetic Equations and Green Functions in Statistical Mechanics (Institute of Physics of the Azerbaijan SSR Academy of Sciences, Baku, 1977); Preprint N. 57 [in Russian].Google Scholar
  3. 3.
    O. E. Lanford, “Time evolution of large classical systems,” Lect. Notes Phys. 38, 1–111 (1975).MathSciNetCrossRefGoogle Scholar
  4. 4.
    I. V. Volovich, “Time irreversibility problem and functional formulation of classical mechanics,” Vestnik Samara State Univ. 8/1, 35–54 (2008); arXiv:0907.2445v1 [cond-mat.stat-mech].Google Scholar
  5. 5.
    I. V. Volovich, “Randomness in classical and quantum mechanics,” Found. Phys. 41(3), 516–528 (2011); arXiv:0910.5391v1 [quant-ph].MATHCrossRefGoogle Scholar
  6. 6.
    I. V. Volovich, “Bogoliubov equations and functional mechanics,” Theor. Math. Phys. 164(3), 1128–1135 (2010).CrossRefGoogle Scholar
  7. 7.
    L. Desvillettes and C. Villani, “On the trend to global equilibriumfor spatially inhomogenious kinetic systems: Boltzmann equation,” Invent.Math. 159(2), 245–316 (2005).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, Singapore, 1994).Google Scholar
  9. 9.
    B. Dragovich, A. Yu. Khrennikov, S.V. Kozyrev and I.V. Volovich, “On p-adicmathematical physics,” p-Adic Numb. Ultr.Anal. Appl. 1(1), 1–17 (2009); arXiv:0904.4205v1 [math-ph].MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    A. S. Trushechkin and I.V. Volovich, “Functional classicalmechanics and rational numbers,” p-Adic Numb. Ultr. Anal. Appl. 1(4), 361–367 (2009); arXiv:0910.1502 [math-ph].MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. S. Trushechkin, “Irreversibility and the role of an instrument in the functional formulation of classical mechanics,” Theor. Math. Phys. 164(3), 1198–1201 (2010).CrossRefGoogle Scholar
  12. 12.
    E. M. Lifshitz and L.M. Pitaevskii, Physical Kinetics. Vol. 10 (Landau and Lifshitz Course of Theoretical Physics) (Pergamon Press, Oxford, 1981).Google Scholar
  13. 13.
    V. V. Kozlov, Thermal Equilibrium in the Sense of Gibbs and Poincar’e (Moscow, Izhevsk, Computer Reseach Institute, 2002) [in Russian].Google Scholar
  14. 14.
    H. Grad, “Principles of the kinetic theory of gases,” in Handbuch der Physik, ed. S. Flügge, Vol.12, pp. 205–294 (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958).Google Scholar
  15. 15.
    V. V. Kozlov and D. V. Treschev, “Fine-grained and coarse-grained entropy in problems of statistical mechanics,” Theor. Math. Phys. 151(1), 539–555 (2007).MATHCrossRefGoogle Scholar
  16. 16.
    J. L. Lebowitz, “From time-symmetric microscopic dynamics to time-asymmetric macroscopic behavior: An overview,” arXiv:0709.0724 [cond-mat.stat-mech].Google Scholar
  17. 17.
    H. Spohn, “Kinetic equations from Hamiltonian dynamics: Markovian limits,” Rev. Mod. Phys. 52(3), 569–615 (1980).MathSciNetCrossRefGoogle Scholar
  18. 18.
    R. L. Dobrushin, Ya. G. Sinai and Yu. M. Sukhov, “Dynamical systems of statistical mechanics,” in Dynamical Systems. II. Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics, Enciclopaedia Math. Sci. Vol. 2, pp. 207–278 (Springer-Verlag, Berlin, 1982).Google Scholar
  19. 19.
    T. V. Dudnikova and H. Spohn, “Local stationarity for lattice dynamics in the harmonic approximation,” Markov Proc. Relat. Fields 12(4), 645–678 (2006); arXiv:math-ph/0505031v1.MathSciNetMATHGoogle Scholar
  20. 20.
    T. V. Dudnikova, “Lattice dynamics in the half-space. Energy transport equation,” J. Math. Phys. 51(8), 083301 (2010); arXiv:0905.4806v1 [math-ph].MathSciNetCrossRefGoogle Scholar
  21. 21.
    E. P. Wigner, “The unreasonable effectiveness of mathematics in the natural sciences,” Comm. Pure Appl. Math. 13(1), 1–14 (1960).MATHCrossRefGoogle Scholar
  22. 22.
    A.V. Shelest, Bogolyubov’s Method in the Dynamic Theory of Kinetic Equations (Moscow, Nauka, 1990) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteMoscowRussia
  2. 2.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations