A non-canonical approach to arithmetic spin geometry and physical applications

Research Articles


A basic requirement of adelic physics is the principle of invariance of the fundamental physical laws under a change of the underlying number field proposed by I.V. Volovich (cf. [20]). In this paper, we develop a manifestly number field invariant approach to Yang-Mills theory, which is formulated within the framework of arithmetic geometry. As well source fields as the Higgs mechanism are incorporated. For this purpose a non-canonical approach to arithmetic spin geometry is proposed, and its physical applications are analyzed. The associated bundle construction is performed in the setting of arithmetic geometry. Furthermore the arithmetic analogue of the following well-known differential geometric fact is proven: Every covariant derivation on a torsor induces a canonical covariant derivation on the associated object.

Key words

Yang-Mills theory number field invariance arithmetic spin geometry associated bundle construction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Ya. Aref’va, B. Dragovich, P. H. Frampton and I. V. Volovich, “Wave function of the universe and p-adic gravity,” Int. J. Mod. Phys. A 6(24), 4341–4358 (1991).Google Scholar
  2. 2.
    S. Bosch, W. Lütkebohmert and M. Raynaud, Néron Models (Springer-Verlag, Berlin, Heidelberg, New York, 1990).MATHGoogle Scholar
  3. 3.
    W. Frisch, The Cohomology of S-Arithmetic Spin Groups and Related Bruhat-Tits Buildings, Dissertation (Mathematisch-Naturwissenschaftliche Fakultät der Georg-August-Universität zu Göttingen, Göttingen, 2002).MATHGoogle Scholar
  4. 4.
    A. Grothendieck and J. Dieudonné, “Etude globaleél émentaire de quelques classes de morphismes,” Publ. Math IHES 8 (1961).Google Scholar
  5. 5.
    A. Grothendieck and J. Dieudonné, “Etude local de sch émas et des morphismes de schémas,” Publ. Math IHES 20 (1961), 24 (1965), 28 (1966), 32 (1967).Google Scholar
  6. 6.
    A. Grothendieck, Schmémas en Groupes I, Lect. Notes Math. 151 (Springer-Verlag, Berlin, Heidelberg, New York, 1970).Google Scholar
  7. 7.
    R. Hartshorne, Algebraic Geometry (Springer-Verlag, New York, Berlin, Heidelberg, 1977).MATHGoogle Scholar
  8. 8.
    A Yu. Khrennikov, Z. Rakić and I.V. Volovich, Eds., p-AdicMathematical Physics, Proc. 2nd Int. Conf. on p-AdicMath. Phys., Belgrade, 15.–21. Sept. 2005, AIP Conf. Proceedings 826 (AIP, New York, 2006).Google Scholar
  9. 9.
    M. Knebusch, “Symmetric bilinear forms over algebraic varieties” in Conf. on Quadratic Forms 1976 (G. Orzech, ed.), Queen’s Papers in Pure and Applied Math. 46, 103–283 (Queen’s Univ., Kingston, Ontario, 1977).Google Scholar
  10. 10.
    M. Kneser, Quadratische Formen (Neu bearb. und hrsg. in Zusammenarbeit mit Rudolf Scharlau) (Springer-Verlag, 2002).Google Scholar
  11. 11.
    M.-A. Knus, Quadratic and Hermitian Forms over Rings (Springer-Verlag, 1991).Google Scholar
  12. 12.
    D. Knutson, Algebraic Spaces, Lect. Notes Math. 203 (Springer-Verlag, Berlin, Heidelberg, New York, 1971).MATHGoogle Scholar
  13. 13.
    S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol.1 (John Wiley & Sons, Inc., 1963).Google Scholar
  14. 14.
    H. B. Lawson,M.-L. Michelsohn, Spin Geometry (Princeton Univ. Press, Princeton, 1989).MATHGoogle Scholar
  15. 15.
    Q. Liu, Algebraic Geometry and Arithmetic Curves, (Oxford Univ. Press, Oxford, New York, 2002).MATHGoogle Scholar
  16. 16.
    P. W. Michor, Gauge Theory for Fiber Bundles, Monographs and Textbooks in Phys. Sciences, Lecture Notes 19 (Bibliopolis, Napoli, 1991).MATHGoogle Scholar
  17. 17.
    J. S. Milne, Etale Cohomology, Princeton Math. Series 33 (Princeton Univ. Press, 1980).Google Scholar
  18. 18.
    R. Schmidt, Arithmetic Gravity and Yang-Mills Theory: An Approach to Adelic Physics via Algebraic Spaces, Dissertation (Fachbereich Mathematik und Informatik der Westfälischen Wilhelms-Universität Münster, 2008).Google Scholar
  19. 19.
    V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific Publ. Co. Pte. Ltd., 1994).Google Scholar
  20. 20.
    I. V. Volovich, “Number theory as the ultimate physical theory,” p-Adic Numbers, Ultrametric Analysis and Applications 2(2), 77–87 (2010); CERN-th. preprint 4781/87.CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Departamento de Física TeóricaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations