Advertisement

p-Adic physics, non-well-founded reality and unconventional computing

Research Articles

Abstract

We consider perspectives of application of coinductive and corecursive methods of non-well-founded mathematics to modern physics, especially to adelic and p-adic quantum mechanics. We also survey perspectives of relationship between modern physics and unconventional computing.

Key words

algorithm coalgoritm induction coinduction non-well-founded probabilities p-adic probabilities non-well-founded reality 

References

  1. 1.
    R. Ackermann, Data, Instruments and Theory (Princeton Univ. Press, Princeton, 1985).Google Scholar
  2. 2.
    P. Aczel, Non-Well-Founded Sets (Stanford, 1988).Google Scholar
  3. 3.
    A. Adamatzky, Computing in Nonlinear Media and Automata Collectives (Inst. Phys. Publishing, 2001).Google Scholar
  4. 4.
    A. Adamatzky, B. De Lacy Costello and T. Asai, Reaction-Diffusion Computers (Elsevier, 2005).Google Scholar
  5. 5.
    S. Albeverio, A. Yu. Khrennikov and P. Kloeden, “Memory retrieval as a p-adic dynamical system” Biosystems 49, 105–115 (1999).CrossRefGoogle Scholar
  6. 6.
    F. Bartels, “Generalized coinduction” Math. Structures Comput. Sci. 13, 321–348 (2003).CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    J. Barwise and J. Etchemendy, The Liar (Oxford UP, New York, 1987).MATHGoogle Scholar
  8. 8.
    J. Barwise and L. Moss, Vicious Circles (Stanford, 1996).Google Scholar
  9. 9.
    J. Barwise and L. Moss, Hypersets (Springer Verlag, New York, 1992).Google Scholar
  10. 10.
    J. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ.Press, Cambridge, 1987).Google Scholar
  11. 11.
    E. Beltrametti and G. Cassinelli, “Quantum mechanics and p-adic numbers,” Found. of Physics 2, 1–7 (1972).CrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Burgin, Super-Recursive Algorithms, Monographs in Computer Science (Springer, 2005).Google Scholar
  13. 13.
    B. J. Copeland, ”Hypercomputation,” Minds and Machines 12, 461–502 (2002).CrossRefMATHGoogle Scholar
  14. 14.
    P. A. M. Dirac, “The physical interpretation of quantum mechanics,” Proc. Roy. Soc. London A 180, 1–39 (1942).CrossRefMathSciNetGoogle Scholar
  15. 15.
    B. Dragovic, ”On signature change in p-adic space-time,” Mod. Phys. Lett. 6, 2301–2307 (1991).CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    E. Eberbach and P. Wegner, “Beyond TuringMachines,” Bulletin of the EATCS 81, 279–304 (2003).MathSciNetMATHGoogle Scholar
  17. 17.
    A. Hurd and P. A. Loeb, An Introduction to Nonstandard Real Analysis (Academic Press, New York, 1980).Google Scholar
  18. 18.
    P. Galison, How Experiments End (Univ. of Chicago Press, Chicago, 1987).Google Scholar
  19. 19.
    R. Gandy, “Church’s Thesis and Principles for Mechanisms,” eds. J. Barwise, H. J. Keisler and K. Kunen, The Kleene Symposium (North-Holland, Amsterdam).Google Scholar
  20. 20.
    D. Goldin, S. Smolka and P. Wegner, (eds.), Interactive Computation: the New Paradigm (Springer, 2006).Google Scholar
  21. 21.
    A. D. Gordon, “Bisimilarity as a theory of functional programming,” Theor. Comput. Sci. 228, 5–47 (1999).CrossRefMATHGoogle Scholar
  22. 22.
    B. Jacobs and J. Rutten, “A tutorial on (co)algebras and (co)induction” EATCS Bulletin 62, 222–259 (1997).MATHGoogle Scholar
  23. 23.
    A. Yu. Khrennikov, “p-Adic quantum mechanics with p-adic valued functions,” J. Math. Phys. 32(4), 932–937 (1991).CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    A. Yu. Khrennikov, p-adic valued distributions in mathematical physics (Kluwer Acad. Publishers, Dordrecht, 1994).MATHGoogle Scholar
  25. 25.
    A. Yu. Khrennikov, Interpretations of Probability (VSP Int. Sc. Publishers, Utrecht/Tokyo, 1999).MATHGoogle Scholar
  26. 26.
    A. Yu. Khrennikov, Non-Archimedian Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer Acad. Publishers, Dordrecht, 1997).Google Scholar
  27. 27.
    A. Yu. Khrennikov, Information Dynamics in Cognitive, Psychological and Anomalous Phenomena (Kluwer Acad. Publishers, Dordrecht, 2004).MATHGoogle Scholar
  28. 28.
    A. Yu. Khrennikov, Modeling of Processes of Thinking in p-Adic Coordinates (Nauka, Fizmatlit, Moscow, 2004) [in Russian].Google Scholar
  29. 29.
    A. Yu. Khrennikov and A. Schumann, “Logical approach to p-adic probabilities,” Bull. of the Section of Logic 35(1), 49–57 (2006).MathSciNetMATHGoogle Scholar
  30. 30.
    N. Koblitz, p-Adic Numbers, p-Adic Analysis and Zeta Functions (Springer-Verlag, 1984).Google Scholar
  31. 31.
    A. N. Kolmogorov, “Grundbegriffe der Wahrscheinlichkeitsrechnung,” Ergebnisse der Mathematik 2, 1–61 (1933).Google Scholar
  32. 32.
    A. A. Markov, Theory of Algorithms (Academy of Sciences of the USSR, Moscow, 1954) [in Russian].Google Scholar
  33. 33.
    K. Morita and K. Imai, Logical Universality and Self-Reproduction in Reversible Cellular Automata (ICES, 1996).Google Scholar
  34. 34.
    L. Moss, “Parametric Corecursion,” Theor. Comput. Sci 260, 139–164 (2001).CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    I. Newton, TheMathematical Principles of Natural Philosophy.Google Scholar
  36. 36.
    D. Pavlović and M. H. Escardó, “Calculus in coinductive form,” in Proc. 13th Annual IEEE Symposium on Logic in Computer Science, pp. 408–417 (1998).Google Scholar
  37. 37.
    A. Robinson, Non-Standard Analysis (North-Holland Publ. Co., 1966).Google Scholar
  38. 38.
    A. Schumann, “Non-Archimedean valued sequent logic,” in Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’06), pp. 89–92 (IEEE Press, 2006).Google Scholar
  39. 39.
    A. Schumann, “p-Adic multiple-validity and p-adic valued logical calculi,” J. Multiple-Valued Logic and Soft Computing 13(1–2), 29–60 (2007).MathSciNetMATHGoogle Scholar
  40. 40.
    A. Schumann, “Non-Archimedean valued predicate logic,” Bull. of the Section of Logic 36(1–2), 67–78 (2007).MathSciNetGoogle Scholar
  41. 41.
    A. Schumann, “Non-Archimedean fuzzy reasoning,” in Fuzzy Systems and Knowledge Discovery (FSKD’07), Vol. 1, pp. 2–6 (IEEE Computer Soc. Press, 2007).CrossRefGoogle Scholar
  42. 42.
    A. Schumann, “Non-Archimedean fuzzy and probability logic,” J. Applied Non-Classical Logics 18/1, 29–48 (2008).CrossRefMathSciNetGoogle Scholar
  43. 43.
    A. Schumann, “Non-well-founded probabilities on streams,” SMPS’08, (2008), to appear.Google Scholar
  44. 44.
    A. A. Siddiqui, M. Akram and E. U. Haque, “Equivalence of completeness axiom and principle of continuous induction,” Science International 13(3), 211–213 (2001).Google Scholar
  45. 45.
    S. Stepney et al.,“Journeys in non-classical computation I: A grand challenge for computing research,” Parallel Algorithms Appl. 20(1), 5–19 (2005).MathSciNetMATHGoogle Scholar
  46. 46.
    S. Stepney et al., “Journeys in non-classical computation II: initial journeys and waypoints,” Parallel Algorithms Appl. 21(2), 97–125 (2006).MathSciNetGoogle Scholar
  47. 47.
    E. Thiran, D. Verstegen and J. Weyers, “p-Adic dynamics,” J. Stat. Phys. 54, 893–913 (1989).CrossRefMathSciNetMATHGoogle Scholar
  48. 48.
    V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, Singapore, 1994).Google Scholar
  49. 49.
    V. S. Vladimirov and I. V. Volovich, “p-Adic quantum mechanics,” Commun. Math. Phys. 123, 659–676 (1989).CrossRefMathSciNetMATHGoogle Scholar
  50. 50.
    I. V. Volovich, “p-Adic string,” Class. Quant. Grav. 4, 83–87 (1987).CrossRefMathSciNetGoogle Scholar
  51. 51.
    P. Wegner, “Why interaction is more powerful than algorithms,” Commun. ACM 40(5), 89–91 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.International Center for Mathematical Modeling in Physics and Cognitive SciencesUniversity of VäxjöVäxjöSweden
  2. 2.Department of Philosophy and Science MethodologyBelarusian State UniversityMinskBelarus

Personalised recommendations