Ecological and Phytochemical Features of Crataegus fallacina Klokov under Conditions of Technogenic Pollution


This article analyzes the effect of technogenic pollution on the content of the main groups of biologically active substances (flavonoids, anthocyanins, hydroxycinnamic acids, procyanidins, tannins, carotenoids, ascorbic acid, and free organic acids) in the fruits and leaves of Crataegus fallacina Klokov, a representative of the natural flora of the Donetsk region. The content of heavy metals, such as cadmium, lead, and mercury (mobile forms), in the soil and plant materials is determined and the environmental safety of the raw materials is evaluated. The most significant changes under conditions of the technogenic environment are observed for the content of tannins in the leaves of C. fallacina and procyanidins in its fruits; this makes it possible to use these parameters for screening the degree of impact of an urbanized environment on plants. The conformity of the raw materials of C. fallacina to the requirements of the regulatory documents for the content of active substances is evaluated. It is shown that these raw materials have a high antioxidant activity, which increases under pollution conditions.

This is a preview of subscription content, access via your institution.


  1. 1

    Bukharina, I.L., Kuz’min, P.A., and Gibadulina, I.I., Analysis of the contents of photosynthetic pigments in leaves of woody plants in urban environment (by an example of Naberezhnye Chelny), Vestn. Udmurt. Univ., Ser. Biol., Nauki Zemle, 2013, no. 1, pp. 20–25.

  2. 2

    Calabrese, E.J., Robyn, B. and Blain, R.B., Hormesis and plant biology, Environ. Pollut., 2009, vol. 157, pp. 42–48.

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Erofeeva, E.A., Hormosis and paradoxical effects in plants affected by motor vehicle pollution and experimental pollution, Extended Abstract of Doctoral (Biol.) Dissertation, Nizhny Novgorod, 2016.

  4. 4

    European Pharmacopoeia, 7th ed. Strasbourg, 2010, vol. 1.

  5. 5

    Galina, A.T., Heavy metals as a factor of environmental pollution (review), Astrakh. Vestn. Ekol. Obraz., 2013, no. 1 (23), pp. 182–192.

  6. 6

    GN Maximum permissible concentrations (MPC) of chemical substances in soil, Approved by General Sanitary Physician of Russian Federation on January 23, 2006. 2_1_7_2041-06.pdf. Accessed March 24, 2020.

  7. 7

    Glukxov, A.Z., Kharkhota, L.V., Pasternak, G.A., and Likhatskaya, E.N., Current state of Donetsk dendroflora, Samar. Nauchn. Vestn., 2016, no. 2 (15), pp. 20–24.

  8. 8

    Goncharuk, E.A. and Zagoskina, N.V., Heavy metals: uptake, toxicity, and protective mechanisms in plants (for example of cadmium ions), Visn. Khar’k. Nats. Agrar. Univ., Ser. Biol., 2017, no. 1 (40), pp. 35–49.

  9. 9

    Gosudarstvennaya farmakopeya Respubliki Belarus’ (The State Pharmacopoeia of the Belarus Republic), Sheryakov, A.A., Ed., Minsk: Pobeda, 2008, vol. 2.

    Google Scholar 

  10. 10

    Gosudarstvennaya farmakopeya Rossiiskoi Federatsii (The State Pharmacopoeia of the Russian Federation), Moscow, 2015, 13rd ed. Accessed September 17, 2019.

  11. 11

    Hadacek, F., Bachmann, G., Engelmeier, D., and Chobot, V., Hormesis and a chemical raison d'être for secondary plant metabolites, Dose-Response, 2011, vol. 9, pp. 79–116.

    CAS  Article  Google Scholar 

  12. 12

    Hellenbrand, N., Sendker, J., Lechtenberg, M., Petereit, F., and Hensel, A., Isolation and quantification of oligomeric and polymeric procyanidins in leaves and flowers of Hawthorn (Crataegus spp.), Fitoterapia, 2015, vol. 104, pp. 14–22.

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Khanina, M.A., Gusel’nikov, E.N., Rodin, A.P., and Ligostaeva, Yu.V., Environmental pollution and biologically active substances in birch leaves, J. Sib. Med. Sci., 2015, no. 6, pp. 121–132.

  14. 14

    Khasanova, S.R., Plekhanova, T.I., Gahsimova, D.T., Galiakhmetova, E.Kh., and Klysh, E.A., Comparison of antioxidant activity of various herbal teas, Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farm., 2007, no. 1, pp. 163–166.

  15. 15

    Khishova, O.M. and Buzuk, G.N., Quantitative determination of procyanidins in hawthorn fruit, Khim.-Farm. Zh., 2006, no. 2, pp. 19–21.

  16. 16

    Kozaeva, M.I., Adaptive capacity of different species of Crataegus and Amelanchier under abiotic and biotic stresses, Austr. J. Tech. Nat. Sci., 2014, nos. 7–8, pp. 84–85.

  17. 17

    Kriger, N.V., Kozlov, M.A., and Baranov, E.S., Impact of technogenic load on the content of ascorbic acid in tree leaves growing in various districts of Krasnoyarsk city, Vestn. Krasn. Gos. Agrar. Univ., 2013, no. 10 (85), pp. 116–119.

  18. 18

    Kurkin, V.A., Morozova, T.V., and Pravdivtseva, O.E., Studies on the development of the methodic of standardization of leaves of Crataegus sanguinea Pall., Khim. Rastit. Syr’ya, 2017, no. 3, pp. 169–173.

  19. 19

    Lukin, S.V., Lisetskii, F.N., and Yavtushenko, V.E., Standardization of heavy metal content in chernozem, Vestn. Ross. Akad. S-kh. Nauk, 2000, no. 4, pp. 68–69.

  20. 20

    Lysenko, G.N. and Yarovyi, S.S., The dynamics of the vegetation cover of petrophytic (on granite) Kamennye Mogily steppes (Donetsk oblast, Ukraine) in conditions of the absolute reserve regime, Vopr. Stepoved., 2019, no. 15, pp. 189–191.

  21. 21

    Maslennikov, P.V. and Mel’nik, A.S., The role of polyphenols in the development of the antioxidant potential of urban plants under technogenic soil pollution, Materialy X Mezhdunarodnogo simpoziuma “Fenol’nye soedineniya: fundamental’nye i prikladnye aspekty” (Proc. X Int. Symp. “Phenolic Compounds: Fundamental and Applied Aspects”), Moscow, 2018, pp. 278–282.

  22. 22

    Metodicheskie ukazaniya po provedeniyu kompleksnogo monitoringa plodorodiya pochv zemel’ sel’skokhozyaistvennogo naznacheniya (Guide for Complex Monitoring of Fertility of Agricultural Soils), Derzhavin, L.M. and Bulgakov, D.S., Eds., Moscow: Rosinformagrotekh, 2003.

    Google Scholar 

  23. 23

    Morozova, T.V., Pharmacognostic study of some types of hawthorn (Crataegus L.), Extended Abstract of Cand. Sci. (Pharm.) Dissertation, Samara, 2019.

  24. 24

    Moustafa, A.A., Zaghlou, M.S., Mansour, S.R., and Alotaibi, M., Conservation strategy for protecting Crataegus x sinaica against climate change and anthropologic activities in South Sinai Mountains, Egypt, Catrina J., 2019, vol. 18, no. 1, pp. 1–6.

    Article  Google Scholar 

  25. 25

    Neverova, O.A. and Tsandekova, O.L., Possible use of quantitative features of pigment complex of wood plants for indication of urban pollution, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, 2007, no. 6, pp. 103–105.

  26. 26

    Nikitina, V.S., Ayupova, R.N., and Yamineva, E.Z., Phenolic compounds of the higher plants and diagnostics of environmental conditions, Vestn. Bashkir. Univ., 2016, vol. 21, no. 2, pp. 303–307.

    Google Scholar 

  27. 27

    Okhotnikova, M.V., Hygienic assessment of urban ecological conditions in industrial region and its role in human health, Extended Abstract of Cand. Sci. (Med.) Dissertation, Donetsk, 2017.

  28. 28

    Orhan, I.E., Phytochemical and pharmacological activity profile of Crataegus oxyacantha L. (hawthorn)—a cardiotonic herb, Curr. Med. Chem., 2018, vol. 25, no. 37, pp. 4854–4865.

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Paraskevopulo, M.F., Suntsova, L.N., and Inshakov, E.M., Analysis of pigment composition of some wood plants affected technogenic pollution of Krasnoyarsk city, Khvoinye Boreal’noi Zony, 2017, vol. 35, nos. 1–2, pp. 54–59.

    Google Scholar 

  30. 30

    Petukhov, A.S., Khritokhin, N.A., Petukhova, G.A., and Kremleva, T.A., Phenolic plant defense system under conditions of environment pollution by heavy metals in Tyumen, Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki, 2019, vol. 161, pp. 93–107.

    Article  Google Scholar 

  31. 31

    Pharmacopoeia of the People’s Republic of China, Beijing: People’s Medical, 2005, vol. 1.

  32. 32

    Radyukina, N.L., Activity of antioxidant system of wild plant species under short influence of stress, Doctoral (Biol.) Dissertation, Nizhny Novgorod, 2016.

  33. 33

    Ryabinina, E.I., Zotova, E.E., Vetrova, E.N., Ponomareva, N.I., and Ilyushina, T.N., New approach to assessment of antioxidant activity of plant material during autooxidation of adrenaline, Khim. Rastit. Syr’ya, 2011, no. 3, pp. 117–121.

  34. 34

    Ryabukhina, M.V., The content of ascorbic acid as an informative indicator of environmental monitoring of large industrial centers (for example, Orenburg), Izv. Orenb. Gos. Agrar. Univ., 2011, no. 2 (30), pp. 231–233.

  35. 35

    Samoilenko, G.Yu., Specific accumulation and distribution of heavy metals in soils, connecting media, and wild plants in urban ecosystems of Eastern Transbaikalia, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Tomsk, 2020.

  36. 36

    Sandre, A.A., Pina, J.M., Moraes, R.M., and Furlan, C.M. Anthocyanins and tannins: is the urban air pollution an elicitor factor? Braz. J. Bot., 2014, vol. 37, no. 9, pp. 1–11.

    Article  Google Scholar 

  37. 37

    Santiago, L.J., Louro, R.P., and Oliveira, D.E., Compartmentation of phenolic compounds and phenylalanine ammonia-lyase in leaves of Phyllanthus tenellus Roxb. and their induction by copper sulphate, Ann. Bot., 2000, vol. 86, pp. 1023–1032.

    CAS  Article  Google Scholar 

  38. 38

    Shabanova, I.V. and Zanozina, O.D., Ecological-toxicological analysis of leached chernozem of Kuban for pollution with heavy metals, Nauchn. Al’m., 2016, no. 4-4 (18), pp. 35–38.

  39. 39

    Skochilova, E.A. and Zakamskaya, E.S., Analysis of biochemical parameters of Betula pendula Roth. in urban conditions, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2013, vol. 15, no. 3 (2), pp. 782–784.

  40. 40

    Skvortsova, T.A., the content of heavy metals in fruits of Rosa majalis Herrm. growing in park zones of Orenburg city, Vestn. Orenb. Gos. Univ., 2017, no. 8 (208), pp. 80–83.

  41. 41

    Trots, V.B. and Trots, N.M., Accumulation of heavy metals in chernozems of Samara Volga region, Izv. Orenb. Gos. Agrar. Univ., 2014, no. 1 (45), pp. 141–144.

  42. 42

    Vodyanitskii, Yu.N., Standards for the contents of heavy metals and metalloids, Eurasian Soil Sci., 2012, vol. 45, no. 3, pp. 321–328.

    CAS  Article  Google Scholar 

  43. 43

    WHO Monographs on Medicinal Plants Commonly Used in the Newly Independent States (NIS), Geneva: World Health Org., 2010.

  44. 44

    Yukhmenko, Yu.S., Seasonal dynamics of the pigment content in plant leaves of genus Crataegus L. in Krivoi Rog region (Dnepropetrovsk oblast, Ukraine), Sci. World, 2018, vol. 2, no. 2 (54), pp. 14–17.

  45. 45

    Zabashta, A.V., Zabashta, N.N., and Lisovitskaya, E.P., Accumulation of heavy metals in soils of foothill regions of Krasnodar krai, Vestn. Kazan. Gos. Agrar. Univ., 2019, no. 1(52), pp. 22–26.

  46. 46

    Zaripova, R.S. and Kuz’min, P.A., Impact of anthropogenic stress on dynamics of ascorbic acid in plants, Innovatsionnaya Nauka, 2015, no. 5, pp. 24–27.

  47. 47

    Zubareva, E.V., Impact of motor vehicles on the content of ascorbic acid in the needles of Scots pine (Pinus sylvestris L.) in Krasnoyarsk city, Vestn. Krasn. Gos. Agrar. Univ., 2017, no. 5 (128), pp. 131–136.

Download references

Author information



Corresponding author

Correspondence to N. A. Vinogradova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vinogradova, N.A., Glukhov, A.Z. Ecological and Phytochemical Features of Crataegus fallacina Klokov under Conditions of Technogenic Pollution. Contemp. Probl. Ecol. 14, 90–97 (2021).

Download citation


  • Crataegus fallacina Klokov
  • technogenic pollution
  • antioxidant activity
  • heavy metals
  • biologically active substances