Features of a Biennial Shoot System as a Unit for Modeling Crown Development in Ulmus glabra Huds

Abstract

This article presents the results of studies on the structural organization of the crown in Ulmus glabra. Knowledge of types of shoot systems regularly changing in the tree crown in the ontogenesis of a species is of both theoretical and practical importance. In our studies, we use an architectural (modular) approach that enables us to describe the spatiotemporal program of tree-crown development. The results show that the main structural unit of the tree crown, resistant to the changes in climatic factors, is a biennial shoot system (BSS). The choice of this unit is determined by the fact that zonality in maternal shoot can be detected only in the second year of the shoot lifespan. To identify the spatiotemporal structure of the BSS, we have compared the traits of 1- and 2-year-old shoots. The BSS of U. glabra undergrowth plants in the forest-steppe oak forest of the Belogorye Natural Reserve have been studied. The study involves 100 species of the same ontogenetic stage. The shoot systems in the studied trees have been differentiated into large (“growth”) and small (“basic”) ones with the same location within the crown. Based on the cross-correlation function, which depends on the internode number on the maternal shoot, a regression model of the length distribution of lateral shoots has been created. It is shown that, when numbering the internodes on the maternal shoot from the top downwards, the dependence of the lateral shoot length of both the growth and the basic BSS in U. glabra vs. the number of internodes is consistent with the exponential model. The development of the BSS is found to be dependent on the light conditions and positioning in the crown. The comparison of two samples allows us to introduce a shift parameter into the model, which defines a specific zone in the maternal shoot.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Anderson, T.W., An Introduction to Multivariate Statistical Analysis, New York: Wiley, 2003.

    Google Scholar 

  2. 2

    Antonova, I.S. and Bart, V.A., Zoning of shoots by the example of shoots of Acer negundo L., Vestn. Tversk. Gos. Univ., Ser. Biol. Ekol., 2015, no. 4, pp. 143–159.

  3. 3

    Antonova, I.S. and Bart, V.A., Dependence of shoot structure of shoot systems on their position in crown of Ulmus glabra (Ulmaceae), Bot. Zh., 2019, vol. 104, no. 2, pp. 254–269.

    Article  Google Scholar 

  4. 4

    Antonova, I.S. and Fat’yanova, E.V., The system of hierarchic levels in the crown structure of trees in moderate zone, Bot. Zh., 2016, vol. 101, no. 6, pp. 628–649.

    Article  Google Scholar 

  5. 5

    Antonova, I.S., Bart, V.A., and Kloch’kova, P.S., The structure of soot systems of some species of genus Acer L., Materialy XX Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Sovremennye tendentsii razvitiya nauki i tekhnologii” (Proc. Int. Sci.-Pract. Conf. “Modern Trends of Development of Science and Tehcnologies”), Belgorod, 2016, no. 11-1, pp. 75–83.

  6. 6

    Antonova, I.S., Televinova, M.S., Kremeneckaia, M.V., and Bart, V.A., On the structure of tree crown on the example of biennial shoot systems of Ulmus glabra Huds, IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 316, art. ID 012028.

  7. 7

    Arato, M., Kolmogorov, A.N., and Sinai, Ya.G., Parameters of complex stationary Gaussian Markov’s process, Dokl. Akad. Nauk SSSR, 1962, vol. 146, no. 4, pp. 747–750.

    Google Scholar 

  8. 8

    Barthélémy, D. and Caraglio, Y., Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny, Ann. Bot., 2007, vol. 99, pp. 375–407.

    Article  Google Scholar 

  9. 9

    Barthélémy, D., Edelin, C., and Hallé, F., Canopy architecture, in Physiology of Trees, Raghavendra, A.S., Ed., New York: Wiley, 1991, pp. 1–20.

    Google Scholar 

  10. 10

    Bebiya, S.M., Pikhtovye lesa Kavkaza (Fir Forests of Caucasus), Moscow, 2002.

    Google Scholar 

  11. 11

    Bucksch, A., Atta-Boateng, A., Azihou, A.F., Bucksch, A., Battogtokh, D., Baumgartner, A., Binder, B.M., Braybrook, S.A., Chang, C., Coneva, V., DeWitt, T.J., Fletcher, A.G., Gehan, M.A., Diaz-Martinez, D.H., Hong, L., et al., Morphological plant modeling: unleashing geometric transfer and unleashing potential within the plant sciences, Front. Plant Sci., 2017, vol. 8, no. 900.

  12. 12

    Costes, E., Lauri, P., Simon, S., and Andrieu, B., Plant architecture, its diversity and manipulation in agronomic conditions, in relation with pest and pathogen attacks, Eur. J. Plant Pathol., 2013, vol. 135, no. 3, pp. 455–470.

    Article  Google Scholar 

  13. 13

    Durand, J.B. and Guédon, Y., Localizing the latent structure canonical uncertainty: entropy profiles for hidden Markov models, Stat. Comput., 2016, vol. 26, no. 1, pp. 549–567.

    Article  Google Scholar 

  14. 14

    Erdős, L., Ambarlı, D., Anenkhonov, O.A., Bátori, Z., Cserhalmi, D., Kiss, M., Kröel-Dulay, G., Liu, H., Magnes, M., Molnár, Z., Naqinezhad, A., Semenishchenkov, Y.A., Tölgyesi, C., and Török, P., The edge of two worlds: A new review and synthesis on Eurasian forest-steppes, Appl. Veg. Sci., 2018, vol. 21, no. 3, pp. 345–362.

    Article  Google Scholar 

  15. 15

    Fan, X.-R., Wang, X., Hua, J., Wang, H., and Kang, M., Optimization of light intensity in a controlled ecological life support system based on a knowledge- and data-driven modeling approach, Proc. 2017 Chinese Automation Congr. (CAC), Piscataway, NJ: Inst. Electr. Electron. Eng., 2017.

  16. 16

    Giuffrida, M.V., Scharr, H., and Tsaftaris, S.A., ARIGAN: synthetic Arabidopsis plants using generative adversarial network, Proc. of Computer Vision Problems in Plant Phenotyping (CVPPP) Workshop, Venice, 2017.

  17. 17

    Goryshina, T.K. and Neshataev, Yu.N., The general features of the microclimate of the oak forest, Uch. Zap. Leningr. Univ.,Ser. Biol. Nauki, 1974, vol. 367, no. 53, pp. 41–57.

    Google Scholar 

  18. 18

    Guédon, Y., Barthélémy, D., Caraglio, Y., and Costes, E., Pattern analysis in branching and axillary flowering sequences, J. Theor. Biol., 2001, vol. 212, no. 4, pp. 481–520.

    Article  Google Scholar 

  19. 19

    Hallé, F., Architectures de Plantes, Montpellier: JPC Edition, 2004.

    Google Scholar 

  20. 20

    Hallé, F. and Oldeman, R.A.A., Essai sur l’Architecture et la Dynamique de Croissance des Arbres Tropicaux, Paris: Masson, 1970.

    Google Scholar 

  21. 21

    Han, L., Soulié, J.-C., Boudon, F., Da Silva, D., Cokelaer, T., Pradal, C., Rouan, L., and Costes, E., Sensitivity analysis of light interception to geometrical traits of apple trees: an in silico study based on mapplet model, Acta Hortic., 2015, vol. 1068, pp. 77–84.

  22. 22

    Koenker, R., Quantile Regression, Cambridge: Cambridge Univ. Press, 2005.

    Google Scholar 

  23. 23

    Lauri, P.É., Differentiation and growth traits associated with acrotony in the apple tree (Malus × domestica, Rosaceae), Am. J. Bot., 2007, vol. 94, no. 8, pp. 1273–1281.

    Article  Google Scholar 

  24. 24

    Lauri, P.E. and Normand, F., Are leaves only involved in flowering? Bridging the gap between structural botany and functional morphology, Tree Physiol., 2017, vol. 37, no. 9, pp. 1137–1139.

    CAS  Article  Google Scholar 

  25. 25

    Lauri, P.E., Bourdel, G., Trottier, C., and Cochard, H., Apple shoot architecture: evidence for strong variability of bud size and composition and hydraulics within a branching zone, New Phytol., 2008, vol. 178, no. 4, pp. 798–807.

    Article  Google Scholar 

  26. 26

    Matsunaga, F.T., Tosti, J.B., Androcioli, F. Brancher, J.D., Costes, E., and Rakocevic, M., Strategies to reconstruct 3D Coffea arabica L. plant structure, SpringerPlus, 2016, vol. 5, no. 1, pp. 2075.

    Article  Google Scholar 

  27. 27

    Mészáros, M., Guédon, Y., Krjka, B., and Costes, E., Analysis of bearing and branching behavior of two apricot cultivars, Acta Hortic., 2017, vol. 1160, pp. 135–140.

  28. 28

    Minervini, M., Scharr, H., and Tsaftaris, S.A., Image analysis: The new bottleneck in plant phenotyping [applications corner], IEEE Signal Process. Mag., 2015, vol. 32, no. 4, pp. 126–131.

    Article  Google Scholar 

  29. 29

    Morozov, G.F., Uchenie o lese (Theory about Forest), Moscow: Goslesbumizdat, 1949.

  30. 30

    Naruzawa, E.S., Malagnac, F., and Bernier, L., Effect of linoleic acid on reproduction and yeast–mycelium dimorphism in the Dutch elm disease pathogens, Botany, 2016, vol. 94, no. 1, pp. 31–39.

    CAS  Article  Google Scholar 

  31. 31

    Neshataev, Yu.N., Geobotanical characteristic of forest type in the Les Na Vorskle Nature Reserve, in Kompleksnye issledovaniya biogeotsenozov lesostepnykh dubrav (Complex Studies of Biogeocenosises of Forest-Steppe Oak Forests), Leningrad, 1986, pp. 32–48.

    Google Scholar 

  32. 32

    Normand, F. and Lauri, P.-E., Advances in understanding mango tree growth and canopy development, in Achieving Sustainable Cultivation of Mangoes, Galan Sauco, V. and Lu, P., Eds., Boca Raton, FL: CRC PRess, 2018, pp. 87–119.

  33. 33

    Peyhardi, J., Caraglio, Y., Costes, E., Lauri, P.E., Trottier, C., and Guedon, Y., Integrative models for joint analysis of shoot growth and branching patterns, New Phytol., 2013, vol. 216, no. 4, pp. 1291–1304.

    Article  Google Scholar 

  34. 34

    Prusinkiewicz, P., Modeling of spatial structure and development of plants, Sci. Hortic., 1998, vol. 74, pp. 113–149.

    Article  Google Scholar 

  35. 35

    Prusinkiewicz, P. and Lindenmayer, A., The Algorithmic Beauty of Plant, New York: Springer-Verlag, 1990.

    Google Scholar 

  36. 36

    Reeb, C., Kaandorp, J., Jansson, F. Puillandre, N., Dubuisson, J.Y., Cornette, R., Jabbour, F., Coudert, Y., Patino, J., Flot, J.F., and Vanderpoorten, A., Quantification of complex modular architecture in plants, New Phitol., 2018, vol. 218, no. 2, pp. 859–872.

    Article  Google Scholar 

  37. 37

    Rivas-Martínez, S., Notions on dynamic-catenal phytosociology as a basis of landscape science, Plant Biosyst., 2005, vol. 139, no. 2, pp. 135–144.

    Article  Google Scholar 

  38. 38

    Seber, G.A.F. and Lee, A.J., Linear Regression Analysis, New York: Wiley, 2003.

    Google Scholar 

  39. 39

    Serebryakov, I.G., Ekologicheskaya morfologiya rastenii: Zhiznennye formy pokrytosemennykh i khvoinykh (Ecological Morphology of the Plants: Life Forms of Angiosperms and Coniferous), Moscow: Vysshaya Shkola, 1962.

  40. 40

    Sievänen, R., Godin, C., DeJong, T.M., and Nikinmaa, E., Functional-structural plant models: a growing paradigm for plant studies, Ann. Bot., 2014, vol. 114, no. 4, pp. 599–603.

    Article  Google Scholar 

  41. 41

    Smirnova, O.V., Bobrovskiy, M.V., and Khanina, L.G., European Russian Forests, New York: Springer-Verlag, 2017.

    Google Scholar 

  42. 42

    Solar, A., Solar, M., and Štampar, F., Stability of the annual shoot diameter in Persian walnut: a case study of different morphotypes and years, Trees, 2006, vol. 20, no. 4, pp. 449–459.

    Article  Google Scholar 

  43. 43

    Taugourdeau, O. and Sabatier, S., Limited plasticity of shoot preformation in response to light by understorey saplings of common walnut (Juglans regia), AoB Plants, 2010, vol. 2010, art. ID plq022.

    Article  Google Scholar 

  44. 44

    Tomlinson, P.B., Branching and axis differentiation in tropical trees, in Tropical Trees as Living Systems, Tomlinson, P.B. and Zimmerman, H., Eds., Cambridge: Cambridge Univ. Press, 1978, pp. 187–207.

    Google Scholar 

  45. 45

    Tondjo, K., Brancheriau, L., Sabatier, S., Kokutse, A.D., Kokou, K., Jaeger, M., de Reffye, P., and Fourcaud, T., Stochastic modeling of tree architecture and biomass allocation: application to teak (Tectona grandis L. f.), a tree species with polycyclic growth and leaf neoformation, Ann. Bot., 2018, vol. 121, no. 7, pp. 1397–1410

    Article  Google Scholar 

  46. 46

    Valdebenito, D., Farías, D., Lampinen, B., Tixier, A., Zwieniecki, M., and Saa, S., The position in the canopy and the bearing status of 1-year-old shoots affect the bearing potential and morphology of current-year shoots in walnuts (Juglans regia L.) cv. Chandler, Trees, 2018, vol. 32, no. 5, pp. 1267–1277.

    Article  Google Scholar 

  47. 47

    Walter, H. and Breckle, S.-W., Okologishe Grundlagen in Global Sicht, Stuttgart: G. Fischer, 1991.

    Google Scholar 

  48. 48

    Walter, H. and Breckle, S.-W., Vegetation und Klimazonen, Stuttgart, 1999.

    Google Scholar 

  49. 49

    Wang, M., White, N., Grimm, V. Hofman, H., Doley, D., Thorp, G., Cribb, B, Wherritt, E., Han, L., Wilkie, J., and Hanan, J., Pattern-oriented modeling as a novel way to verify and validate functional-structural plant models: a demonstration with the annual growth module of avocado, Ann. Bot., 2018, vol. 121, no. 5, pp. 941–959.

    Article  Google Scholar 

  50. 50

    Yang, W., Chen, X., Zhang, M., Gao, C., Liu, H., Saudreau, M., Costes, E., and Han, M., Light interception characteristics estimated from three-dimensional virtual plants for two apple cultivars and influenced by combinations of rootstocks and tree architecture in Loess Plateau of China, Acta Hortic., 2017, vol. 1160, pp. 245–252.

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, project no. 16-04-01617.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to I. S. Antonova or V. A. Bart.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by M. Romanova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antonova, I.S., Bart, V.A. Features of a Biennial Shoot System as a Unit for Modeling Crown Development in Ulmus glabra Huds. Contemp. Probl. Ecol. 13, 309–319 (2020). https://doi.org/10.1134/S1995425520030026

Download citation

Keywords:

  • shoot
  • shoot zonality
  • exponential model
  • multivariate analysis of variance
  • spatiotemporal units of crown structure
  • biennial shoot system