Advertisement

Contemporary Problems of Ecology

, Volume 11, Issue 2, pp 221–226 | Cite as

Biogeochemical Features of Platinum Accumulation in Scutellaria baicalensis Georgi (Lamiaceae)

  • Yu. A. Pshenichkina
  • A. Ya. Pshenichkin
Article
  • 13 Downloads

Abstract

For the first time, the platinum accumulation levels and distribution patterns in the soil and in roots, stems, leaves, flowers, and seeds of medicinal herb Scutellaria baicalensis Georgi, Lamiaceae (Baikal skullcap) have been researched using the stripping voltammetry method. The plants were collected both in their natural habitats (southwestern part of Primorskii krai, Amur oblast, and Chita oblast) and from the S. baicalensis population introduced in the Central Siberian Botanical Garden (CSBG), Siberian Branch, Russian Academy of Sciences (Novosibirsk). In the habitats of S. baicalensis, the content of platinum in soils varies from 0.001 to 0.426 g/t. The content of platinum in various parts of the plants varies from 0.001 to 0.43 g/t. The platinum bioaccumulation factor in S. baicalensis individuals collected in various habitats varies from 0.01 to 6.1 g/t.

Keywords

Scutellaria baicalensis Lamiaceae platinum biogeochemical features accumulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artemov, I.A., et al., Illyustrirovannaya entsiklopediya rastitel’nogo mira Sibiri (Illustrated Encyclopedia of Flora of Siberia), Sedel’nikov, V.P., Ed., Novosibirsk: Arta, 2009.Google Scholar
  2. Banaeva, Yu.A., Chinese skullcap (Scutellaria baicalensis Georgi): ecology, biology, and naturalization, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Novosibirsk, 1994.Google Scholar
  3. Banaeva, Yu.A. and Pshenichkin, A.Ya., Elementary composition of Scutellaria baicalensis Georgi, Sib. Ekol. Zh., 1999, no. 3, pp. 271–275.Google Scholar
  4. Boudreau, A.E., Mathez, E.A., and McCallum, I.S., Halogen geochemistry of the Stillwater and Bushveld complexes: evidence for transport of the platinum-group elements by Cl-rich fluids, J. Petrol., 1986, vol. 27, no. 4, pp. 967–986.CrossRefGoogle Scholar
  5. Dunn, C.E., Biogeochemistry as an aid to exploration for gold, platinum and palladium in the northern forests of Saskatchewan, Canada, J. Geochem. Explor., 1986, vol. 25, no. 1, pp. 21–40.CrossRefGoogle Scholar
  6. Dunn, C.E., Biogeochemical prospecting for metals. 20.3.3. Platinum group metals, in Biological Systems in Mineral Exploration and Processing, Brook, R.R., Dunn, C.E., and Hall, G.E.M., Eds., Hemel Hemtead: Ellis Howard, 1995, pp. 395–402.Google Scholar
  7. Gabdurakhmanova, E.M., Gorchakov, E.V., Glyzina, T.S., and Kolpakova, N.A., RF Patent 2426108, Byull. Izobret., 2011, no. 22.Google Scholar
  8. Ganzhara, N.F., Borisov, B.A., Efimov, O.E., and Zlobina, M.V., Landshaftovedenie. Praktikum: Uchebnoe posobie (Landscape Science: Practical Manual), Ganzhara, N.F., Ed., Moscow: Ross. Gos. Agrar. Univ.-Mosk. S-kh. Akad., 2016.Google Scholar
  9. Gol’dberg, E.D., Dygai, A.M., Litvinenko, V.I., Popova, T.P., and Suslov, N.I., Shlemnik baikal’skii. Fitokhimiya i farmakologicheskie svoistva (Chinese Skullcap: Phytochemistry and Pharmacological Properties), Tomsk: Tomsk. Gos. Univ., 1994.Google Scholar
  10. Gorchakov, E.V., Pshenichkin, A.Ya., and Banaeva, Yu.A., Noble metals in Chinese skullcap, Fundam. Issled., 2008, no. 7, pp. 66–68.Google Scholar
  11. Greger, M., Uptake of nuclides by plants, in Technical Report No. TR-04-14, Stockholm: Stockholm Univ., 2004. http://www.skb.se/upload/publications/pdf/ TR-04-14.pdf. Accessed October 3, 2017.Google Scholar
  12. Kolpakova, N.A., Pikula, N.P., and Pshenichkin, A.Ya., Determination of platinum metals by voltammetry in natural and industrial materials, Materialy mezhdunarodnoi konferentsii “Fundamental’nye i prikladnye problemy okhrany okruzhayushchei sredy,” 12–16 sentyabrya 1995 g., Tezusy dokladov (Proc. Int. Conf. “Fundamental and Applied Problems of Environment Protection,” September 12–16, 1995, Abstracts of Papers), Tomsk: Tosmk. Pedagog. Univ., 1995, vol. 3, pp. 58–59.Google Scholar
  13. Kovalevskii, A.L., Biogeokhimiya rastenii (Biogeochemistry of the Plants), Novosibirsk: Nauka, 1991.Google Scholar
  14. Kovalevskii, A.L., Lithologic search for platinoids, Otech. Geol., 1993, no. 8, pp. 27–35.Google Scholar
  15. Kovalevskii, A.L., Kovalevskaya, O.M., and Prokopchuk, S.I., Microbiolites of platinum group elements in plant ash determined by scintillation emission spectroscopy, Otech. Geol., 2004, no. 5, pp. 45–51.Google Scholar
  16. Koval’skii, V.V., Geokhimicheskaya ekologiya: ocherki (Geochemical Ecology: Essays), Moscow: Nauka, 1974.Google Scholar
  17. Malyuga, D.P., Biogeokhimicheskii metod poiskov rudnykh mestorozhdenii (Biogeochemical Method of Search of Ore Deposits), Moscow: Akad. Nauk SSSR, 1963.Google Scholar
  18. Odjegba, V.J., Brown, M.T., and Turner, A., Studies on the effects of platinum group elements on Lactuca sativa L., Am. J. Plant Physiol., 2007, vol. 2, no. 3, pp. 183–194.CrossRefGoogle Scholar
  19. Oke, S., Kikkert, J., Vasiluk, L., and Hale, B., A study of platinum accumulation in radish (Raphanus sativus) and durum wheat (Triticum durum) plants, Stud. Undergrad. Res. Guelph, 2013, vol. 6, no. 2, pp. 66–70.Google Scholar
  20. Pshenichkina, Ya.A. and Pshenichkin, A.Ya., The pattern of gold accumulation in Chinese skullcap, Usp. Sovrem. Estestvozn., 2016, no. 10, pp. 152–156.Google Scholar
  21. Rastitel’noe mnogoobrazie Tsentral’nogo sibirskogo botanicheskogo sada SO RAN (Vegetation Diversity of the Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences), Koropachinskii, I.Yu. and Banaev, E.V., Eds., Novosibirsk: Geo, 2014.Google Scholar
  22. Razina, T.G. and Pshenichkina, Ya.A., Dependence of anti-tumor activity of preparations from Chinese skullcap (Scutellaria baicalensis Georgi) on vegetation phase and age of the plants, Rastit. Resur., 1989, vol. 25, no. 2, pp. 247–249.Google Scholar
  23. Varshal, G.M., Velyukhanova, T.K., Koshcheeva, I.Ya., et al., The reasons of losses of noble metals in analysis of water, soil, and coal-containing minerals (by example of gold), XIV Vsesoyuznoe Chernyaevskoe osveshchanie, Tezisy dokladov (The XIV All-Union Chernyaev’s Conf., Abstracts of Papers), Novosibirsk: Inst. Neorg. Khim., Sib. Otd., Akad. Nauk SSSR, 1989, vol. 2, pp. 3–4.Google Scholar
  24. Yanin, E.P., Platinum metals in environment: distribution, sources, technogenic pollution, and recycling, Nauch. Tekh. Asp. Okhrany Okruzh. Sredy, 2008, no. 5, pp. 2–94.Google Scholar
  25. Yusupov, D.V., Primenenie biogeokhimicheskogo i mineralogo-geokhimicheskikh metodov poiskov v zolotonosnykh raionakh Verkhnego Priamur’ya (Use of Biogeochemical and Mineralogical-Geochemical Methods of Search in Gold-Bearing Areas of Upper Amur Region), Blagoveshchensk: Amursk. Gos. Univ., 2013.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Central Siberian Botanical Garden, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations