Contemporary Problems of Ecology

, Volume 9, Issue 5, pp 600–607 | Cite as

Arginine in the life of coniferous plants

  • N. P. Chernobrovkina
  • E. V. Robonen
  • A. R. Unzhakov
  • N. N. Tyutyunnik


This review summarizes the results of long-term studies of the arginine status in coniferous plants. The characteristics of the arginine metabolism in coniferous species; its annual and daily dynamics; and the effect of temperature, light, and mineral nutrition on the accumulation of this amino acid in plant organs and tissues are described. Methods for increasing the arginine content in coniferous plants via regulating their mineral nutrition are discussed.


coniferous plants L-arginine amino acids metabolism temperature light intensity mineral nutrition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J.D., Nadelhoffer, K.I., Steudler, P., and Melillo, J.M., Nitrogen saturation in northern forest ecosystems, BioScience, 1989, vol. 39, pp. 378–386.CrossRefGoogle Scholar
  2. Alaudinova, E.V., Ecological characteristics of low-temperature adaptation in stand-forming coniferous species in Siberia: structural-chemical modifications of bud meristem, Doctoral (Biol.) Dissertation, Krasnoyarsk, 2011.Google Scholar
  3. Borovikova, A.M., Dynamics of free amino acids in Scots pine needles during the growing season, in Lesovedenie i lesnoe khozyaistvo (Silviculture and Forestry), Minsk: Vysshaya Shkola, 1980, no. 15, pp. 21–24.Google Scholar
  4. Chernobrovkina, N.P., Consumption and distribution of nitrogen within the organs of 15-year Scots pine, Fiziol. Rast., 1994, vol. 41, no. 3, pp. 338–343.Google Scholar
  5. Chernobrovkina, N.P. and Makarevskiy, M.F., Amino acid composition of pine xylem sap related to the growth intensity, Lesovedenie, 1988, no. 3, pp. 66–69.Google Scholar
  6. Chernobrovkina, N.P. and Robonen, E.V., Nitrogen, boron and amino acid levels in the needles of Scots pine seedlings with controlled nitrogen and boron supply, Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, 2015, no. 12, pp. 35–44.Google Scholar
  7. Chernobrovkina, N.P., Robonen, E.V., and Zaitseva, M.I., L-arginine accumulation in needles of Scots pine with regulated nitrogen and boron supply, Khim. Rastit. Syr’ya, 2010, no. 3, pp. 11–14.Google Scholar
  8. Chernobrovkina, N.P., Robonen, E.V., Morozov, A.K., and Makarova, T.N., Accumulation of L-arginine in needles of Norway spruce with regulated nitrogen and boron supply, Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, 2013, no. 3, pp. 159–165.Google Scholar
  9. Chernobrovkina, N.P. and Shulyakovskaya, T.A., Metabolic characteristics of growing and dormant Scotch pine roots in the course of tree development, Plant Soil, 1998, vol. 200, no. 1, pp. 357–367.Google Scholar
  10. Corpas, F.J., Chaki, M., Frandez-Orcana, A., Valderrama, R., Paloma, J.M., Carreras, A., Begara-Morales, J.C., Airaki, M., Del Rio, L.A., and Barroso, J.B., Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions, Plant Cell Physiol., 2008, vol. 49, pp. 1711–1722.CrossRefPubMedGoogle Scholar
  11. Durzan, D.J., Nitrogen metabolism of Picea glauca I. Seasonal changes of free amino acids in buds,shoots,apices and leaves and the metabolism of uniformly labeled C-I-arginine by buds during the onset of dormancy, Can. J. Bot., 1968, vol. 46, no. 7, pp. 909–919.CrossRefGoogle Scholar
  12. Durzan, D.J., Nitrogen metabolism of Picea glauca. IV.Metabolism of uniformly labeled 14C-L-arginine, [carbamyl-14C]-L-citrulline, and [1,2,3,4-14C]-gamma-guanidinobutyric acid during diurnal changes in the soluble and protein nitrogen associated with the onset of expansion of spruce buds, Can. J. Biochem., 1969, vol. 47, pp. 771–783.Google Scholar
  13. Durzan, D.J., Stress-induced nitric oxide and adaptive plasticity in conifers, J. For. Sci., 2002, vol. 48, pp. 281–291.Google Scholar
  14. Durzan, D.J., Arginine and the shade tolerance of white spruce saplings entering winter dormancy, J. For. Sci., 2010, vol. 56, pp. 77–83.Google Scholar
  15. Durzan, D.J. and Pedroso, M.C., Nitric oxide and reactive nitrogen oxide species in plants, Biotechnol. Genet. Eng. Rev., 2002, vol. 19, pp. 293–337.CrossRefPubMedGoogle Scholar
  16. Durzan, D.J. and Steward, F.C., The nitrogen metabolism of Picea glauca (Moench) Voss and Pinus banksiana Lamb. as influenced by mineral nutrition, Can. J. Bot., 1967, vol. 45, pp. 695–710.CrossRefGoogle Scholar
  17. Durzan, D.J. and Steward, F.C., Nitrogen metabolism, in Plant Physiology: An Advanced Treatise, Steward, F.C. and Bidwell, R.G.S., Eds., New York: Academic, 1983, pp. 255–265.Google Scholar
  18. Engvild, K.C. The “Red” Decline of Norway Spruce or “Røde Rødgraner”—is it Ammonium Overload or Top Dying? Roskilde: Riso National Lab., 2005. 1&sw=Engvild&tab=3#tabs. Accessed November 13, 2015.Google Scholar
  19. Gessler, A., Schneider, S., Weber, P., Hanemann, U., and Rennenberg, H., Soluble N compounds in trees exposed to high loads of N a comparison between the roots of Norway spruce (Picea abies) and beech (Fagus sylvatica) trees grown under field conditions, New Phytol., 1998, vol. 138, pp. 385–399.CrossRefGoogle Scholar
  20. Gezelius, K and Nasholm, T., Free amino acids and protein in Scots pine seedlings cultivated at different nutrient availabilities, Tree Physiol., 1993, vol. 13, no. 1, pp. 71–86.CrossRefPubMedGoogle Scholar
  21. Gruffman, L., Jämtgård, S., and Näsholm, T., Plant nitrogen status and co-occurrence of organic and inorganic nitrogen sources influence root uptake by Scots pine seedlings, Tree Physiol., 2014, vol. 34, no. 2, pp. 205–213.CrossRefPubMedGoogle Scholar
  22. Huhn, B.G. and Schulz, H., Contents of free amino acids in Scots pine needles from field sites with different levels of nitrogen deposition, New Phytol., 1996, vol. 134, pp. 95–101.CrossRefGoogle Scholar
  23. Lähdesmäki, P. and Pietiläinen, P., Seasonal variation in the nitrogen metabolism of young Scots pine, Silva Fen., 1988. vol. 22, no. 3, pp. 233–240.CrossRefGoogle Scholar
  24. Näsholm, T. and Ericsson, A., Seasonal changes in amino acids, protein and total nitrogen in needles of fertilized Scots pine trees, Tree Physiol., 1990, vol. 6, pp. 267–281.PubMedGoogle Scholar
  25. Novitskaya, Yu.E. and Chikina, P.F., Dynamics of free amino acids in organs and tissues of pine, in Azotnyi obmen u sosny na Severe (Nitrogen Metabolism in Pine in the North), Leningrad: Nauka, 1980, pp. 46–69.Google Scholar
  26. Robonen, E.V., Chernobrovkina, N.P., Chernyshenko, O.V., and Zaitseva, M.I., Sources of foliage for arginine immunostimulant manufacturing, Vestn. Mosk. Gos. Univ. Lesa–Lesn. Vestn., 2012, no. 3, pp. 11–15.Google Scholar
  27. Robonen, E.V., Chernobrovkina, N.P., Makarova, T.N., Korotky, V.P., Prytkov, Yu.N., and Marisov, S.S., Accumulation of L-arginine in Scots pine needles and its distribution over the crown under regulation of nitrogen and boron supply, Izv. Vyssh. Uchebn. Zaved., Lesn. Zh., 2014, no. 3, pp. 67–78.Google Scholar
  28. Shulyakovskaya, T.A., Features of primary metabolism in early ontogenesis of Scots pine, Vestn. Bashkir. Gos. Univ., 2001, no. 2, pp. 180–183.Google Scholar
  29. Shulyakovskaya, T.A., Repin, A.V., and Shreders, S.M., Effect of nitrogen fertilization on the development of silver birch and curly birch seedlings, Vestn. Mosk. Gos. Univ. Lesa–Lesn. Vestn., 2010, no. 1, pp. 9–13.Google Scholar
  30. Sudachkova, N.E., Milyutina, I.L., and Romanova, L.I., Free amino acid composition in Scots p tissues under stress impact in rhizosphere, J. Stress Physiol. Biochem., 2007, vol. 3, no. 2, pp. 4–14.Google Scholar
  31. Sudachkova, N.E., Milyutina, I.L., and Semenova, G.P., Influence of water deficit on contents of carbohydrates and nitrogenous compounds in Pinus sylvestris L. and Larix sibirica Ledeb. tissues, Eurasian J. For. Res., 2002, vol. 4, pp. 1–11.Google Scholar
  32. Warren, C.R. and Adams, M.A., Phosphorus affects growth and partitioning of nitrogen to Rubisco in Pinus pinaster, Tree Physiol., 2002, vol. 22, pp. 11–19.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. P. Chernobrovkina
    • 1
  • E. V. Robonen
    • 1
  • A. R. Unzhakov
    • 2
  • N. N. Tyutyunnik
    • 2
  1. 1.Forest Research Institute, Karelian Research CentreRussian Academy of SciencesPetrozavodskRussia
  2. 2.Institute of Biology, Karelian Research CentreRussian Academy of SciencesPetrozavodskRussia

Personalised recommendations