Contemporary Problems of Ecology

, Volume 9, Issue 4, pp 494–502 | Cite as

Experimental studies of the effect of beaver (Castor fiber L.) vital activity products on the formation of zooplankton structure (by the example of growth of two cladoceran species of different sizes)

  • A. V. Krylov
  • I. V. Chalova
  • N. S. Lapeeva
  • O. L. Tselmovich
  • A. V. Romanenko
  • V. L. Lavrov


Experiments in microcosms have demonstrated that beaver vital activity products (BVAPs) promote an increase in concentrations of total nitrogen (N) and total phosphorus (P), a decrease in the N/P value in water, and an increase in the abundance and biomass of bacterioplankton. Under such conditions, the abundance and biomass of small Ceriodaphnia dubia Richard and large Daphnia (Ctenodaphnia) magna Straus, which live separately, increase. The coexistence of these cladocerans in microcosms under the BVAP influences results in a high increase in the abundance and biomass of D. magna; in similar experiments without the influence of BVAP, Ceriodaphnia dubia becomes more abundant. The results of bioassay demonstrate that the number of newborns of Ceriodaphnia dubia decreases in water where Daphnia magna is numerous owing to BVAPs. It is suggested that the vital activity products of large representatives of the genus Daphnia inhibit the fecundity of small species of Cladocera. This fact, along with the high competitiveness of large cladoceran species under conditions of a high level of nutritive base, determine the formation of zooplankton communities in beaver ponds which are characterized by a high abundance and biomass and low uniformity


beaver vital activity species of different sizes Daphnia (Ctenodaphnia) magna Straus Ceriodaphnia dubia Richard abundance biomass bacterioplankton bioassay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, T. and Hessen, D.O., Carbon, nitrogen, and phosphorus content of freshwater zooplankton, Limnol. Oceanogr., 1991, vol. 36, pp. 807–814.CrossRefGoogle Scholar
  2. Balushkina, E.B. and Vinberg, G.G., Dependence between weight and length of the body of planktonic animals, in Obshchie osnovy izucheniya vodnykh ekosistem (General Principles of Analysis of Aquatic Ecosystems), Leningrad: Nauka, 1979, pp. 169–172.Google Scholar
  3. Bargmann, C.I., Comparative chemosensation from receptors to ecology, Nature, 2006, vol. 444, pp. 295–301.CrossRefPubMedGoogle Scholar
  4. Beklemishev, V.N., Classification of biocenological (symphysiological) links, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1951, vol. 57, no. 5, pp. 3–30.Google Scholar
  5. Boersma, M. and Kreutzer, C., Life at the edge: is food quality really of minor importance at low quantities? Ecology, 2002, vol. 83, no. 9, pp. 2552–2561.CrossRefGoogle Scholar
  6. Burns, C.W., Crowding-induced changes in growth, reproduction and morphology of Daphnia, Freshwater Biol., 2000, vol. 43, no. 1, pp. 19–29.CrossRefGoogle Scholar
  7. Chaichana, R., Leah, R., and Moss, B., Birds as eutrophicating agents: a nutrient budget for a small lake in a protected area, Hydrobiologia, 2010, vol. 646, pp. 111–121.CrossRefGoogle Scholar
  8. Chalova, I., Krylov, A., Shevchenko, N., and Lavrov, V., The effect concentration of beavers’ vital activity products on Cladocera fertility in laboratory experiments, 6th Int. Beaver Symp., Croatia, September 17–20, 2012, Abstracts of Papers, Zagreb: Univ. of Zagreb, 2011, p. 65.Google Scholar
  9. Chemical Communication in Crustaceans, Breithaupt, T. and Thiel, M., Eds., New York: Springer-Verlag, 2010.Google Scholar
  10. Chalova, I.V., Shevchenko, N.S., Tsel’movich, O.L., and Krylov, A.V., Reaction of Ceriodaphnia dubia Richard on life remains of water and near-water environmentforming species, Mezhd. shkola-konf. “Aktual’nye problemy izucheniya rakoobraznykh kontinental’nykh vod,” Borok, 5–9 noyabrya 2012 g. (Int. School-Conf. “Urgent Problems of Analysis of Crustacean in Continental Waters,” Borok, November 5–9, 2012), Kostroma: Kostromsk. Dom Pechati, 2012, pp. 309–312.Google Scholar
  11. Chuikov, Yu.S., Ecological analysis of composition and structure of communities of aquatic animals. Ecological classification of invertebrates found in freshwater plankton, Ekologiya, 1981, no. 3, pp. 71–77.Google Scholar
  12. Collen, P. and Gibson, R.J., The general ecology of beavers (Castor spp.), as related to their influence on stream ecosystems and riparian habitats, and subsequent effects on fish—a review, Rev. Fish Biol. Fish., 2001, vol. 10, pp. 439–461.CrossRefGoogle Scholar
  13. Ekosistema maloi reki v izmenyayushchikhsya uloviyakh sredy (Ecosystem of Small River in Changing Environmental Conditions), Moscow: KMK, 2007.Google Scholar
  14. Feneva, I.Yu., Palash, A.L., and Budaev, S.V., Influence of food abundance and biotic relationships on successful introduction of large and small species of Cladocera in experiments, Zool. Zh., 2010, vol. 89, no. 4, pp. 416–423.Google Scholar
  15. Gapeeva, M.V., Razgulin, S.M., and Skopintsev, B.A., Cartilage persulfate analysis of total nitrogen in natural waters, Gidrokhim. Mater., 1984, vol. 87, pp. 67–70.Google Scholar
  16. Golovkin, A.N., Influence of marine colonial birds on development of phytoplankton, Okeanologiya (Moscow), 1967, vol. 4, no. 4, pp. 272–282.Google Scholar
  17. Ivleva, I.V., Biologicheskie osnovy i metody massovogo kul’tivirovaniya kormovykh bespozvonochnykh (Biological Principles and Methods of Mass Cultivation of Food Invertebrates), Moscow: Nauka, 1969.Google Scholar
  18. Jones, C.G., Lawton, J.H., and Shachak, M., Organisms as ecosystem engineers, Oikos, 1994, vol. 69, pp. 373–386.CrossRefGoogle Scholar
  19. Krylov, A.V., Activity of beavers as an ecological factor affecting the zooplankton of small rivers, Russ. J. Ecol., 2002, vol. 33, no. 5, pp. 349–355.CrossRefGoogle Scholar
  20. Krylov, A.V., Zooplankton ravninnykh malykh rek (Zooplankton of the Plain Small Rivers), Moscow: Nauka, 2005.Google Scholar
  21. Krylov, A.V., Impact of beaver activity upon zooplankton of the small rivers in the upper Volga basin, in Restoring the European Beaver: 50 Years of Experience, Sjöberg, G. and Ball, J.P., Eds., Sofia: Pensoft, 2011, pp. 241–254.Google Scholar
  22. Krylov, A.V., Chalova, I.V., and Tsel’movich, O.L., Cladocerans under conditions of small river damming by man and beavers, Russ. J. Ecol., 2007, vol. 38, no. 1, pp. 34–38.CrossRefGoogle Scholar
  23. Krylov, A.V., Kulakov, D.V., Zhalova, I.V., and Papchenkov, V.G., Zooplankton presnykh vodoemov v usloviyakh vliyaniya gidrofil’nykh ptits (Freshwater Zooplankton Affected by Hydrophilic Birds), Izhevsk: Izd. S.A. Permyakova, 2012.Google Scholar
  24. Kotliar, N.B., Application of the new keystone-species concept to prairie dogs: how well does it work? Conserv. Biol., 2000, vol. 14, no. 6, pp. 1715–1721.CrossRefGoogle Scholar
  25. Lampert, W., Daphnia: Development of a Model Organism in Ecology and Evolution, Oldendorf: Int. Ecol. Inst., 2011.Google Scholar
  26. Legeida, I.S., Dolinskii, V.L., and Rogozyanskaya, T.D., Influence of beaver on hydrological fauna, Gidrobiol. Zh., 1987, vol. 23, no. 6, pp. 97–98.Google Scholar
  27. Legeida, I.S. and Rogozyanskaya, T.D., Zooplankton in the beaver’s habitats, Gidrobiol. Zh., 1981, vol. 17, no. 2, pp. 16–21.Google Scholar
  28. Metodika opredeleniya toksichnosti vody i vodnykh vytyazhek iz pochv, osadkov stochnykh vod, otkhodov po smertnosti i izmeneniyu plodovitosti tseriodafnii (The Method for Analysis of Toxicity of Water and Water Extracts for Soils, Sediments of Waste Waters, Death Remains, and Change of Fertility of Ceriodaphnia Species), Moscow: Akvaros, 2007.Google Scholar
  29. Naiman, R.J., Animal influences on ecosystem dynamics, BioScience, 1988, vol. 38, pp. 750–752.CrossRefGoogle Scholar
  30. Naiman, R.J., Melillo, J.M., and Hobbie, J.E., Ecosystem alteration of boreal forest streams by beaver (Castor canadensis), Ecology, 1986, vol. 67, no. 5, pp. 1254–1269.CrossRefGoogle Scholar
  31. Naiman, R.J., Pinay, G., Johnston, C., and Pastor, J., Beaver influence on the long-term biogeochemical characteristics of boreal forest drainage networks, Ecology, 1994, vol. 74, no. 4, pp. 905–921.CrossRefGoogle Scholar
  32. Novikov, M.A. and Kharlamova, M.N., Transbiotic factors in aquatic environment: a review, Zh. Obshch. Biol., 2000, vol. 61, no. 1, pp. 22–46.PubMedGoogle Scholar
  33. Pain, R.T., A note on trophic complexity and community stability, Am. Nat., 1969, vol. 103, pp. 91–93.CrossRefGoogle Scholar
  34. PND F 14.1:2.106-97. Metodika vypolneniya iznerenii massovoi kontsentratsii fosfora obshchego v probakh prirodnykh i ochishchennykh stochnykh vod fotometricheskim metodom posle okisleniya persul’fatom (PND F 14.1:2.106-97: Measurement of Mass Concentration of Total Phosphorous in Natural and Purified Waste Water Probes by Photometry after Oxidation Using Persulphate), Moscow: Akvaros, 2004.Google Scholar
  35. Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting aquatic microflora, Limnol. Oceanogr., 1980, vol. 25, no. 5, pp. 943–948.CrossRefGoogle Scholar
  36. Power, M.E., Tilman, D., Estes, J.A., Menge, B.A., Bond, W.J., Scott Mills, L., Dayly, G., Castilla J.C., Lubcenko, J., and Paine, R., Challenges in quest for keystones, BioScience, 1996, vol. 45, no. 8, pp. 609–620.CrossRefGoogle Scholar
  37. Restoring the European Beaver: 50 Years of Experience, Sjöberg, G. and Ball, J.P., Eds., Sofia: Pensoft, 2011.Google Scholar
  38. Roman, J. and McCarthy, J.J., The whale pump: marine mammals enhance primary productivity in a coastal basin, PLoS One, 2010, vol. 5, no. 10, p. e13255. doi 10.1371/journal.pone.0013255CrossRefPubMedPubMedCentralGoogle Scholar
  39. Romanovsky, Yu.E. and Feniova, I.Yu., Competition among Cladocera: effect of different levels of food supply, Oikos, 1985, vol. 44, pp. 243–252.CrossRefGoogle Scholar
  40. Rosell, F., Borzér, O., Collen, P., and Parker, H., Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems, Mamm. Rev., 2005, vol. 35, no. 3, 4, pp. 248–276.CrossRefGoogle Scholar
  41. Tolomeev, A.P., A concept “ecological stoichiometry” in aquatic ecosystems: literature review, Sib. Ekol. Zh., 2006, no. 1, pp. 13–19.Google Scholar
  42. Townsend, C.R., The patch dynamics concept of stream community ecology, J. North Am. Benthol. Soc., 1989, vol. 8, pp. 36–50.CrossRefGoogle Scholar
  43. Urabe, J., Clasen, J., and Sterner, R.W, Phosphorus limitation of Daphnia growth: is it real, Limnol. Oceanogr., 1997, vol. 42, no. 6, pp. 1436–1443.CrossRefGoogle Scholar
  44. Zadereev, E.S., Chemical interactions among planktonic crustaceans, Zh. Obshch. Biol., 2002, no. 2, pp. 149–157.Google Scholar
  45. Zavyalov, N.A., Krylov, A.V., Bobrov, A.A., Ivanov, V.K., and Dgebuadze, Yu.Yu., Vliyanie rechnogo bobra na ekositemy malykh rek (Influence of River Beaver on Small River Ecosystems), Moscow: Nauka, 2005.Google Scholar
  46. Zherikhin, V.V., Evolutionary biocenology: a problem of model choice, in Ekosistemnye perestriki i evolyutsiya biosfery (Ecosystem Transformations and Evolution of Biosphere), Moscow: Nedra, 1994, pp. 13–20.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. V. Krylov
    • 1
  • I. V. Chalova
    • 1
  • N. S. Lapeeva
    • 1
  • O. L. Tselmovich
    • 1
  • A. V. Romanenko
    • 1
  • V. L. Lavrov
    • 2
  1. 1.Papanin Institute for Biology of Inland WatersRussian Academy of SciencesBorok, Nekouzskii raion, Yaroslavl oblastRussia
  2. 2.Voronezh State Nature Biosphere ReserveTsentral’naya usad’ba, VoronezhRussia

Personalised recommendations