Contemporary Problems of Ecology

, Volume 9, Issue 3, pp 266–271 | Cite as

Transbiome invasions of femtoplankton

  • V. S. Mukhanov
  • O. A. Rylkova
  • E. G. Sakhon
  • T. V. Butina
  • O. I. Belykh


The results of ecological and phylogenetic studies of femtoplankton, the smallest size fraction of plankton formed by viruses and ultramicrobacteria (UMB), are overviewed to shed light on the problem of transbiome invasions by microbes. Phylogenetic lineages of viruses and UMB are shown to be associated with particular biomes, thus indicating infrequent transbiome transitions in the microbial world. An alternative hypothesis of widespread cross-colonization events requires a deeper analysis of the factors that form the barrier between biomes and are responsible for the adaptation of microorganisms to different environments.


femtoplankton virioplankton ultramicrobacteria filterable bacteria SAR11 LD12 phylogenetic diversity biome salinity osmoregulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alenazy, M.S. and Mosadomi, H.A., Clinical implications of calcifying nanoparticles in dental diseases: a critical review, Int. J. Nanomed., 2014, vol. 9, pp. 27–31.Google Scholar
  2. Anderson, R.E., Brazelton, W.J., and Baross, J.A., The deep viriosphere: assessing the viral impact on microbial community dynamics in the deep subsurface, Rev. Mineral. Geochem., 2013, vol. 75, no. 1, pp. 649–675.CrossRefGoogle Scholar
  3. Breitbart, M., Miyake, J.H., and Rohwer, F., Global distribution of nearly identical phage-encoded DNA sequences, FEMS Microbiol. Lett., 2004, vol. 236, pp. 249–256.CrossRefPubMedGoogle Scholar
  4. Breitbart, M. and Rohwer, F., Here a virus, there a virus, everywhere the same virus? Trends Microbiol., 2005, vol. 13, no. 6, pp. 278–284.Google Scholar
  5. De Meester, L., Gómez, A., Okamura, B., and Schwenk, K., The Monopolization Hypothesis and the dispersal-gene flow paradox in aquatic organisms, Acta Oecol. J. Ecol., 2002, vol. 23, pp. 121–135.CrossRefGoogle Scholar
  6. Drake, J.W., Charlesworth, B., Charlesworth, D., and Crow, J.F., Rates of spontaneous mutation, Genetics, 1998, vol. 148, no. 4, pp. 1667–1686.PubMedPubMedCentralGoogle Scholar
  7. Drake, J.W. and Holland, J.J., Mutation rates among RNA viruses, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 24, pp. 13910–13913.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Duda, V.I., Suzina, N.E., Polivtseva, V.N., and Boronin, A.M., Ultramicrobacteria: formation of the concept and contribution of ultramicrobacteria to biology, Microbiology, 2012, vol. 81, no. 4, pp. 379–390.CrossRefGoogle Scholar
  9. Falkowski, P.G., Fenchel, T., and Delong, E.F., The microbial engines that drive Earth’s biogeochemical cycles, Science, 2008, vol. 320, pp. 1034–1039.CrossRefPubMedGoogle Scholar
  10. Folk, R.L., Nanobacteria and the precipitation of carbonate in unusual environments, Sediment. Geol., 1999, vol. 126, pp. 47–55.CrossRefGoogle Scholar
  11. Galand, P.E., Lovejoy, C., Pouliot, J., Garneau, M.E., and Vincent, W.F., Microbial community diversity and heterotrophic production in a coastal Arctic ecosystem: a stamukhi lake and its source waters, Limnol. Oceanogr., 2008, vol. 53, pp. 813–823.CrossRefGoogle Scholar
  12. Gazol, J.M., Del Giorgio, P.A., Massana, R., and Duarte, C.M., Active versus inactive bacteria: sizedependence in a coastal marine plankton community, Mar. Ecol.: Progr. Ser., 1995, vol. 128, pp. 91–97.CrossRefGoogle Scholar
  13. Giovannoni, S.J., Bibbs, L., Cho, J.C., Stapels, M.D., Desiderio, R., Vergin, K.L., Rappé, M.S., Laney, S., Wilhelm, L.J., Tripp, H.J., Mathur, E.J., and Barofsky, D.F., Pro-teorhodopsin in the ubiquitous marine bacterium SAR11, Nature, 2005, vol. 438, no. 7064, pp. 82–85.CrossRefPubMedGoogle Scholar
  14. Hahn, M.W., The microbial diversity of inland waters, Curr. Opin. Biotechnol., 2006, vol. 17, pp. 256–261.CrossRefPubMedGoogle Scholar
  15. Kan, J., Evans, S.E., Chen, F., and Suzuki, M.T., Novel estuarine bacterioplankton in rRNA operon libraries from the Chesapeake Bay, Aquat. Microbiol. Ecol., 2008, vol. 51, pp. 55–66.CrossRefGoogle Scholar
  16. Kajander, E.O. and Ciftcioglu, N., Nanobacteria: an alternative mechanism for pathogenic intra-and extracellular calcification and stone formation, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, no. 14, pp. 8274–8279.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kunz, C., Rudloff, S., Baier, W., and Klein, S., Oligosaccharides in human milk: structural, functional, and metabolic aspects, Ann. Rev. Nutr., 2000, vol. 20, no. 1, pp. 699–722.Google Scholar
  18. Martiny, J.B., Riemann, L., Marston, M.F., and Middelboe, M., Antagonistic coevolution of marine planktonic viruses and their hosts, Ann. Rev. Mar. Sci., 2014, vol. 6, pp. 393–414.CrossRefPubMedGoogle Scholar
  19. Morris, R.M., Rappé, M.S., Connon, S.A., Vergin, K.L., Siebold, W.A., and Carlson, C.A., Giovannoni, S. J. SAR11 clade dominates ocean surface bacterioplankton communities, Nature, 2002, vol. 420, no. 6917, pp. 806–810.CrossRefPubMedGoogle Scholar
  20. Mukhanov, V.S. and Kemp, R.B., Microcalorimetry of the smallest plankton fraction: in search for the sources of heat dissipation, Mar. Ecol. J., 2005, vol. 1 special issue, pp. 84–98.Google Scholar
  21. Mukhanov, V.S., Naidanova, O.G., Lopukhina, O.A., and Kemp, R.B., Cell-, biovolume-, and biosurface-specific energy fluxes through marine picoplankton as a function of the assemblage size structure, Thermochim. Acta, 2007, vol. 458, no. 1, pp. 23–33.CrossRefGoogle Scholar
  22. Nagata, T. and Kirchman, D.L., Release of dissolved organic matter by heterotrophic protozoa: implications for microbial food webs, Arch. Hydrobiol. Beih. Ergebn. Limnol., 1992, vol. 35, pp. 99–109.Google Scholar
  23. Oren, A., The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems, Hydrobiologia, 2001, vol. 466, pp. 61–72.CrossRefGoogle Scholar
  24. Rappé, M.S., Connon, S.A., Vergin, K.L., and Giovannoni, S.J., Cultivation of the ubiquitous SAR11 marine bacterioplankton clade, Nature, 2002, vol. 418, no. 6898, pp. 630–633.CrossRefPubMedGoogle Scholar
  25. Rohwer, F., Global phage diversity, Cell, 2003, vol. 113 no. 2, p. 141.CrossRefPubMedGoogle Scholar
  26. Rohwer, F. and Thurber, R.V., Viruses manipulate the marine environment, Nature, 2009, vol. 459, no. 7244, pp. 207–212.CrossRefPubMedGoogle Scholar
  27. Rusch, D.B., Halpern, A.L., Sutton, G., Heidelberg, K.B., Williamson, S., Yooseph, S., Wu, D.Y., Eisen, J.A., Hoffman, J.M., Remington, K., Beeson, K., Tran, B., Smith, H., Baden-Tillson, H., Stewart, C., et al., The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific, PLoS Biol., 2007, vol. 5, no. 3, pp. 398–431.Google Scholar
  28. Salcher, M.M., Pernthaler, J., Frater, N., and Posch, T., Vertical and longitudinal distribution patterns of different bacterioplankton populations in a canyon-shaped, deep pre-alpine lake, Limnol. Oceanogr., 2011, vol. 56, no. 6, pp. 2027–2039.CrossRefGoogle Scholar
  29. Sano, E., Carlson, S., Wegley, L., and Rohwer, F., Movement of viruses between Biomes, Appl. Environ. Microbiol., 2004, vol. 70, pp. 5842–5846.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Schwalbach, M.S., Tripp, H.J., Steindler, L., Smith, D.P., and Giovannoni, S.J., The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity, Environ. Microbiol., 2010, vol. 12, no. 2, pp. 490–500.CrossRefPubMedGoogle Scholar
  31. Short, C.M. and Suttle, C.A., Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments, Appl. Environ. Microbiol., 2005, vol. 71, pp. 480–486.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Short, S.M. and Short, C.M., Diversity of algal viruses in various North American freshwater environments, Aquat. Microbiol. Ecol., 2008, vol. 51, pp. 13–21.CrossRefGoogle Scholar
  33. Sniegowski, P.D., Gerrish, P.J., Johnson, T., and Shaver, A., The evolution of mutation rates: separating causes from consequences, BioEssays, 2000, vol. 22, no. 12, pp. 1057–1066.CrossRefPubMedGoogle Scholar
  34. Snyder, J.C., Wiedenheft, B., Lavin, M., Roberto, F.F., Spuhler, J., Ortmann, A.C., Douglas, T., and Young, M., Virus movement maintains local virus population diversity, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 19102–19107.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sullivan, M.B., Waterbury, J.B., and Chisholm, S.W., Cyanophages infecting the oceanic cyanobacterium Prochlorococcus, Nature, 2003, vol. 424, no. 6952, pp. 1047–1051.CrossRefPubMedGoogle Scholar
  36. Suttle, C.A., Marine viruses—major players in the global ecosystem, Nat. Rev. Microbiol., 2007, vol. 5, pp. 801–812.CrossRefPubMedGoogle Scholar
  37. Tripp, H.J., Kitner, J.B., Schwalbach, M.S., Dacey, J.W.H., Wilhelm, L.J., and Giovannoni, S.J., SAR11 marine bacteria require exogenous reduced sulfur for growth, Nature, 2008, vol. 452, no. 7188, pp. 741–744.CrossRefPubMedGoogle Scholar
  38. Tripp, H.J., Schwalbach, M.S., Meyer, M.M., Kitner, J.B., Breaker, R.R., and Giovannoni, S.J., Unique glycineactivated riboswitch linked to glycine-serine auxotrophy in SAR11, Environ. Microbiol., 2009, vol. 11, no. 1, pp. 230–238.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Urbano, P. and Urbano, F., Nanobacteria: facts or fancies? PLoS Pathog., 2007, vol. 3 no. 5, p. e55.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Velimirov, B., Nanobacteria, ultramicrobacteria and starvation forms: a search for the smallest metabolizing bacterium, Microb. Environ., 2001, vol. 16, no. 2, pp. 67–77.CrossRefGoogle Scholar
  41. Vermeij, G.J. and Dudley, R., Why are there so few evolutionary transitions between aquatic and terrestrial ecosystems? Biol. J. Linn. Soc., 2000, vol. 70, pp. 541–554.CrossRefGoogle Scholar
  42. Weisse, T., Distribution and diversity of aquatic protists: an evolutionary and ecological perspective, Biodiversity Conserv., 2008, vol. 17, pp. 243–259.CrossRefGoogle Scholar
  43. Williams, T.J., Joux, F., Lauro, F.M., Matallana-Surget, S., and Cavicchioli, R., Physiology of marine oligotrophic ultramicrobacteria, in Extremophiles Handbook, New York: Springer-Verlag, 2011, pp. 1179–1199.CrossRefGoogle Scholar
  44. Wommack, K.E. and Colwell, R.R., Virioplankton: viruses in aquatic ecosystems, Microbiol. Mol. Biol. Rev., 2000, vol. 64, no. 1, pp. 69–114.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yooseph, S., Nealson, K.H., Rusch, D.B., McCrow, J.P., Dupont, C.L., Kim, M., Johnson, J., Montgomery, R., Ferriera, S., Beeson, K., Williamson, S.J., Tovchigrechko, A., Allen, A.E., Zeigler, L.A., Sutton, G., et al., Genomic and functional adaptation in surface ocean planktonic prokaryotes, Nature, 2010, vol. 468, no. 7320, pp. 60–66.CrossRefPubMedGoogle Scholar
  46. Zhao, Y., Temperton, B., Thrash, J.C., Schwalbach, M.S., Vergin, K.L., Landry, Z.C., Deerinck, T., Sullivan,M.B., and Giovannoni, S.J., Abundant SAR11 viruses in the ocean, Nature, 2013, vol. 494, no. 7437, pp. 357–360.CrossRefPubMedGoogle Scholar
  47. Zwart, G., Crump, B.C., Kamst-van Agterveld, M.P., Hagen, F., and Han, S.K., Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers, Aquat. Microbiol. Ecol., 2002, vol. 28, pp. 141–155.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. S. Mukhanov
    • 1
  • O. A. Rylkova
    • 1
  • E. G. Sakhon
    • 1
  • T. V. Butina
    • 2
  • O. I. Belykh
    • 2
  1. 1.Kovalevsky Institute of Marine Biological ResearchRussian Academy of SciencesSevastopolRussia
  2. 2.Limnological Institute, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations