Contemporary Problems of Ecology

, Volume 9, Issue 3, pp 318–328 | Cite as

Microbiological factors of the formation of iron-containing minerals

  • L. M. Kondratyeva
  • E. M. Golubeva
  • Z. N. Litvinenko
Article
  • 29 Downloads

Abstract

In the present study, the process of biofilm formation in iron-containing aqueous medium in the presence of different organic compounds with different bioavailability (yeast extract, peptone, and humic substances) is considered. Investigations conducted using a scanning electronic microscope and X-ray diffraction analysis allow us to reveal the presence of biologically produced goethite (α-FeOOH) in the crystal structure. It was supposed that the supply of surface waters contaminated with organic compounds to ironcontaining underground waters could increase the risk of plugging aquifer pore space by biogenic iron-containing minerals.

Keywords

underground waters organic matter biofilm biomineral goethite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arami, H., Khandhar, A.P., Tomitaka, A., Yu, E., Goodwill, P.W., Conolly, S.M., and Krishnan, K.M., In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents, Biomaterials, 2015, vol. 52, pp. 251–261.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bhattacharyya, A., Stavitski, E., Dvorak, J., and Martínez, C.E., Redox interactions between Fe and cysteine: spectroscopic studies and multiplet calculations, Geochim. Cosmochim. Acta, 2013, vol. 2, no. 1, pp. 89–100.CrossRefGoogle Scholar
  3. Chan, C.S., Fakra, S.C., Edwards, D.C., Emerson, D., and Banfield, J.F., Iron oxyhydroxide mineralization on microbial extracellular polysaccharides, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 3807–3818.CrossRefGoogle Scholar
  4. Coker, V.S., Byrne, J.M., Telling, N.D., van der Laan, G., Lloyd, J.R., Hitchcock, A.P., Wang, J., and Pattrick, R.A., Characterization of the dissimilatory reduction of Fe(III)-oxyhydroxide at the microbe-mineral interface: the application of STXM-XMCD, Geobiology, 2012, vol. 10, no. 4, pp. 347–354.CrossRefPubMedGoogle Scholar
  5. Cosmidis, J., Benzerara, K., Morin, G., Busigny, V., Lebeau, O., Jézéquel, D., Noël, V., Dublet, G., and Othmane, G., Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France), Geochim. Cosmochim. Acta, 2014, vol. 126, no. 1, pp. 78–96.CrossRefGoogle Scholar
  6. Genuchten van, C.M., Peña, J., Amrose, S.E., and Gadgil, A.J., Structure of Fe(III) precipitates generated by the electrolytic dissolution of Fe(0) in the presence of groundwater ions, Geochim. Cosmochim. Acta, 2014, vol. 127, pp. 285–304.CrossRefGoogle Scholar
  7. Karmalov, A.I. and Filimonova, S.V., Overcoming of the clogging and corrosion effects of equipment boreholes, Vodosnabzh. Sanit. Tekh., 2011, no. 9, pp. 21–25.Google Scholar
  8. Kim, J., Choi, H., and Pachepsky, Y.A., Biofilm morphology as related to the porous media clogging, Water Res., 2010, vol. 44, no. 4, pp. 1193–1201.CrossRefPubMedGoogle Scholar
  9. Kondratyeva, L.M. and Golubeva, E.M., Formation of iron minerals on zeolite matrix, Russ. Geol. Geophys., 2014, vol. 55, no. 12, pp. 1387–1394.CrossRefGoogle Scholar
  10. Kondratyeva, L.M. and Litvinenko, Z.N., Production of biofilms by microbial complexes in underground waters in vitro, Biotekhnologiya, 2014, no. 3, pp. 73–82.Google Scholar
  11. Kondratyeva, L.M., Morozova, O.Yu., Andreeva, D.V., Stukova, O.Yu., and Golubeva, E.M., Microbiological factor in Fe migration through the biogeochemical barriers, Mater. Vseross. kofn. “Geologicheskaya evolyutsiya vzaimodeistviya vody s gornymi porodami” (Proc. All- Russ. Conf. “Geological Evolution of Interaction of Water and Mountain Minerals”), Tomsk: Izd. Nauch. Tekh. Liter., 2012, pp. 321–324.Google Scholar
  12. Körstgens, V., Flemming, H.-C., Wingender, J., and Borchard, W., Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa, Water Sci. Technol., 2001, vol. 43, no. 6, pp. 49–57.PubMedGoogle Scholar
  13. Kulakov, V.V. and Kondratyeva, L.M., Biogeochemical purification of underground waters in Amur region, Tikhookean. Geol., 2008, vol. 27, no. 1, pp. 109–118.Google Scholar
  14. Larese-Casanova, P., Haderlein, S.B., and Kappler, A., Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: effect of pH, bicarbonate, phosphate, and humic acids, Geochim. Cosmochim. Acta, 2010, vol. 74, no. 13, pp. 3721–3734.CrossRefGoogle Scholar
  15. Nikolaev, Yu.A. and Plakunov, V.K., Biofilm—“city of microbes” or an analogue of multicellular organisms? Microbiology (Moscow), 2007, vol. 76, no. 2, pp. 125–138.CrossRefGoogle Scholar
  16. Potekhina, Zh.S., Metabolizm Fe(III) vosstanavlivayushchikh bakterii (Metabolism of Fe(III) Reducing Bacteria), Tolyatti: Inst. Ekol. Vodn. Basseina, Ross. Akad. Nauk, 2006.Google Scholar
  17. Rong, X.M., Chen, W.L., Huang, Q.Y., Cai, P., and Liang, W., Pseudomonas putida adhesion to goethite: studied by equilibrium adsorption, SEM, FTIR, and ITC, Colloids Surf., 2010, vol. 80, pp. 79–85.CrossRefGoogle Scholar
  18. Salas, E.C., Berelson, W.M., Hammond, D.E., Kampf, A.R., and Nealson, K.A., The impact of bacterial strain on the products of dissimilatory iron reduction, Geochim. Cosmochim. Acta, 2010, vol. 74, no. 2, pp. 574–583.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Schwertmann, U., Wagner, F., and Knicker, H., Ferrihydrite— humic associations: magnetic hyperfine interactions, Soil Sci. Soc. Am. J., 2005, vol. 69, pp. 1009–1015.CrossRefGoogle Scholar
  20. Shvartsev, S.L., Interaction in the water-rock system as a new basis for the development of hydrogeology, Russ. J. Pac. Geol., 2008, vol. 2, no. 6, pp. 465–475.CrossRefGoogle Scholar
  21. Walter, D., Buxbaum, G., and Laqua, W., The mechanism of the thermal transformation from goethite to hematite, J. Therm. Anal. Calorim., 2001, vol. 63, pp. 733–748.CrossRefGoogle Scholar
  22. Yang, H., Lu, R., Downs, R.T., and Costin, G., Goethite, a-FeO(OH), from single-crystal data, Acta Crystallogr., 2006, vol. 62, no. 12, pp. 250–252.Google Scholar
  23. Zavarzin, G.A., Non-Darwinian branch of evolution, Vestn. Ross. Akad. Nauk, 2000, vol. 70, no. 5, pp. 403–411.Google Scholar
  24. Zegeye, A., Mustin, C., and Jorand, F., Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite, Geobiology, 2010, vol. 8, no. 3, pp. 209–222.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • L. M. Kondratyeva
    • 1
  • E. M. Golubeva
    • 2
  • Z. N. Litvinenko
    • 3
  1. 1.Institute of Water and Ecological Problems, Far East BranchRussian Academy of SciencesKhabarovskRussia
  2. 2.Kosygin Institute of Tectonics and Geophysics, Far East BranchRussian Academy of SciencesKhabarovskRussia
  3. 3.Khabarovsk Municipal Unitary Enterprise “Vodocanal”KhabarovskRussia

Personalised recommendations