Advertisement

Contemporary Problems of Ecology

, Volume 8, Issue 7, pp 916–924 | Cite as

Retrospective assessment of the dynamics of nitrogen availability in pine forests of the near-Moscow region based on the data of phytoindication

Article
  • 23 Downloads

Abstract

Earlier published data on the long-term geobotanic monitoring in permanent pilot plots have been used to analyze changes in trophic conditions and estimate nitrogen nutrition availability to pine forests of the Serebryanyi Bor Forestry located in the Moscow oblast. The assessments of habitats based on the ecological scales of soil richness with nitrogen, which were developed by D.N. Tsyganov and G. Ellenberg, and analysis of the dynamics of stenobiont species have revealed the properties of changes in the species composition and conditions of nitrogen availability to forests for the period from 1957–1961 to 2003. The results indicate increased nitrogen availability to forests in the studied period for all permanent plots, but reflect different intensities of the trend of eutrophication in different monitoring stages. A more intense growth in soil richness with nitrogen in all permanent plots was in the period since 1957–1961 to 1989–1990. In the next years, the level of nitrogen availability to phytocenoses almost did not change. The improvement in the trophic conditions was accompanied by the growth in total species richness and increase in the number of stenobionts with high requirements to nitrogen nutrition. The results from analyzing the dynamics of stenobionts confirm the division of the period under consideration into two stages. From 1957–1961 to 1989–1990, changes in the species composition of plant communities in the pine forests under consideration were similar but differed in intensity. From 1989–1990 to 2003 (against the background of total deceleration of the eutrophication trend), the similarity of species dynamics in the communities was disturbed. The impact of air pollution by NOx on nitrogen nutrition availability to forests was examined with consideration for the fact that the studied area is within the capital agglomeration. The dynamics of the intensity of air nitrogen deposition is in good agreement with the revealed changes in the species composition of phytocenoses and nitrogen soil richness. It gives reasons to suppose that the trend of forest eutrophication in the 1960s–1980s was strengthened by the impact of increased levels of atmospheric nitrogen deposition.

Keywords

forest phytocenoses ecological scales trophic conditions stenobionts forest eutrophication air pollution nitrogen compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azotfiksatsiya v lesnykh biogeotsenozakh (Nitrogen Fixation in Biogeocenoses), Vomperskii, S.E., Ed., Moscow: Nauka, 1987.Google Scholar
  2. 2.
    Bazilevich, N.I., Biologicheskaya produktivnost’ ekosistem Severnoi Evrazii (Biological Productivity of Ecosystems of Northern Eurasia), Moscow: Nauka, 1993.Google Scholar
  3. 3.
    Begon, M., Townsend, C.R., and Harper, J.L., Ecology: From Individuals to Ecosystems, New York: Wiley, 2005.Google Scholar
  4. 4.
    Proc. Expert Workshop “Review and Revision of Empirical Critical Loads,” Noordwijkerhout, June 23–25, 2010, RIVM Report: 680359002, Bobbink, R. and Hettelingh, J.-P., Eds., Bilthoven, Netherlands: Natl. Inst. Publ. Health Environ., 2011.Google Scholar
  5. 5.
    Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J.-W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., and De Vries, W., Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis, Ecol. Appl., 2010, vol. 20, pp. 30–59.CrossRefPubMedGoogle Scholar
  6. 6.
    Borken, W. and Matzner, E., Nitrate leaching in forest soils: an analysis of long-term monitoring sites in Germany, J. Plant Nutr. Soil Sci., 2004, vol. 167, pp. 277–283.CrossRefGoogle Scholar
  7. 7.
    Chertov, O.G. and Razumovskii, S.M., Ecological processes of soil development, Zh. Obshch. Biol., 1980, vol. 41, no. 3, pp. 386–396.Google Scholar
  8. 8.
    Dentener, F., Stevenson, D., Ellingsen, K., van Noije, T., Schultz, M., Amann, M., Atherton, C., Bell, N., Bergmann, D., Bey, I., Bouwman, L., Butler, T., Cofala, J., Collins, B., Drevet, J., et al., The global atmospheric environment for the next generation, Environ. Sci. Technol., 2006, vol. 40, pp. 3586–3594.CrossRefPubMedGoogle Scholar
  9. 9.
    De Vries, W., Reinds, G.J., van der Salm, C., Draaijers, G.P.J., Bleeker, A., Erisman, J.W., Auee, J., Gundersen, P., Kristensen, H.L., van Dobben, H., de Zwart, D., Derome, J., Voogd, J.C.H., and Vel, E.M., Intensive Monitoring of Forest Ecosystems in Europe, 2001 Technical Report. EC, UN/ECE, Brussels, Geneva, 2001.Google Scholar
  10. 10.
    Ellenberg, H., Weber, H.E., Dull, R., Wirth, V., Werner, W., and Paulisen, D., Zeigerwerte von Pflanzen in Mitteleuropa (Indicator values of plants in Central Europe), in Scripta Geobotanics, Gottingen: Verlag Erich Goltze, 1991, vol.18.Google Scholar
  11. 11.
    Fedorets, N.G. and Bakhmet, O.N., Ekologicheskie osobennosti transformatsii soedinenii ugleroda i azota v lesnykh pochvakh (Ecological Features of Transformation of Carbon and Nitrogen Compounds in Forest Soils), Petrozavodsk: Karel. Nauch. Tsentr, Ross. Akad. Nauk, 2003.Google Scholar
  12. 12.
    Glazovskaya, M.A., Geokhimiya prirodnykh i tekhnogennykh ladshaftov SSSR (Geochemistry of Natural and Technogenic Landscapes of the Soviet Union), Moscow: Vysshaya Shkola, 1988.Google Scholar
  13. 13.
    Jenssen, M., Assessment of the effects of top-soil changes on plant species diversity in forests, due to nitrogen deposition, in Progress in the Modeling of Critical Thresholds, Impacts to Plant Species and Ecosystem Services in Europe: CCE Status Report 2009. Coordination Centre for Effects, 2009, pp. 83–99.Google Scholar
  14. 14.
    Komarov, A.S., The models of plant succession and soil dynamics after climatic changes, Kompyut. Issled. Model., 2009, vol. 1, no. 4, pp. 405–413.Google Scholar
  15. 15.
    Komarov, A.S. and Zubkova, E.V., Dynamics of a distribution of ecological niches in plant communities at succession, Math. Biol. Bioinform., 2012, vol. 7, no. 1, pp. 152–161.CrossRefGoogle Scholar
  16. 16.
    Landolt, E., Okologische Zeigerwerts zur Sweizer Flora, Zurich: Veroff. Geobot. Inst. ETH, 1977, no. 64, pp. 1–208.Google Scholar
  17. 17.
    Maslov, A.A., Dynamics of phytocenotic ecological groups of species and forest types during natural successions of protected forests of the center of Russian Plain, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1998, vol. 103, no. 2, pp. 34–43.Google Scholar
  18. 18.
    Maslov, A.A., Succession dynamics of the wood stand and lower layers in postpyrogenic 100-year lichen-green moss pine forest, Lesovedenie, 2002, no. 2, pp. 23–29.Google Scholar
  19. 19.
    Maslov, A.A., Monitoring of model forest ecosystems in protected forest areas, in monitoring prirodnogo naslediya (Monitoring of Natural Heritage), Moscow: KMK, 2009, pp. 21–37.Google Scholar
  20. 20.
    Mina, V.N. and Vasil’eva, I.N., Influence of underbrush on forest and vegetation properties of soils in mixed pine forests, in Lesa Podmoskov’ya (Forests of Moscow Oblast), Moscow: Nauka, 1965, pp. 43–62.Google Scholar
  21. 21.
    Nikitin, S.A., Forest types of Serebryannyi Bor Experimental Forestry, in Statsionarnye biogeotsenoticheskie issledovaniya v Serebryanoborskom opytnom lesnichestve (Stationary Biogeocenotic Studies in Serebryannyi Bor Experimental Forestry), Tr. Lab. Lesoved., Akad. Nauk SSSR, Moscow: Akad. Nauk SSSR, 1961, vol. 2, pp. 11–176.Google Scholar
  22. 22.
    Polyakova, G.A., Melankholin, P.N., and Lysikov, A.V., Dynamics of composition and structure of mixed pine forests of Moscow oblast, Lesovedenie, 2011, no. 2, pp. 42–50.Google Scholar
  23. 23.
    Polyakova, G.A., Melankholin, P.N., and Lysikov, A.V., Dynamics of broadleaved and coniferous-broadleaved forests in the Moskva River valley, Lesovedenie, 2012, no. 3, pp. 12–18.Google Scholar
  24. 24.
    Posch, M., Jettelingh, J.-P., and Slootweg, J., Assessing NEC Directive objectives for acidification and eutrophication with 2001 and present knowledge, in Modeling and Mapping of Atmospherically-Induced Ecosystems Impacts in Europe, CCE Status Report 2012, Bilthoven, Netherlands: Natl. Inst. Publ. Health Environ., 2012, pp. 31–39.Google Scholar
  25. 25.
    Rabotnov, T.A., Nitrogen in terrestrial biogeocenosises, in Strukturno-finktsional’naya organizatsiya biogeotsenozov (Structural and Functional Organization of Biogeocenosises), Moscow: Nauka, 1980, pp. 69–90.Google Scholar
  26. 26.
    Ramenskii, L.G., Tsatsenkin, I.A., Chizhikov, O.N., and Antipov, N.A., Ekologicheskaya otsenka kormovykh ugodii po rastitel’nomu pokrovu (Ecological Analysis of Fodder Resources Using Vegetation Cover), Moscow: Sel’khozgiz, 1956.Google Scholar
  27. 27.
    Rysin, L.P., Vegetation of some forest types in Serebryannyi Bor Experimental Forestry, in Statsionarnye biogeotsenoticheskie issledovaniya v podzone yuzhnoi taigi (Stationary Biogeocenotic Studies in Subzone of Southern Taiga), Moscow: Nauka, 1964, pp. 5–12.Google Scholar
  28. 28.
    Rysin, L.P., Aleksakhina, T.I., Bykov, A.V., Kolesnikov, A.V., Lysikov, A.B., Maslov, A.A., Melankholin, P.N., Molchanov, A.G., Polyakova, G.A., and Tsel’niker, Yu.L., Serebryanoborskoe opytnoe lesnichestvo: 65 let lesnogo monitoringa (Serebryanyi Bor Experimental Forestry: 65 Years of Forest Monitoring), Moscow: KMK, 2010.Google Scholar
  29. 29.
    Rysin, L.P., Savel’eva, L.I., Polyakova, G.A., Rysin, S.L., Bednova, O.V., and Maslov, A.A., Monitoring rekreatsionnykh lesov (Monitoring of Recreation Forests), Moscow: Otd. Nauchno-Tekh. Inform., Pushch. Nauch. Tsentr, Ross. Akad. Nauk, 2003.Google Scholar
  30. 30.
    Savenko, V.S., Natural and anthropogenic sources of atmospheric pollution, in Okhrana prirody i vosproizvodstvo prirodnykh resursov (Protection of Nature and Renew of Natural Resources), Moscow: Vseross. Inst. Nauch. Tekh. Inform., 1991, vol.31.Google Scholar
  31. 31.
    Shanin, V.N., Komarov, A.S., Mikhailov, A.V., and Bykhovets, S.S., Modeling carbon and nitrogen dynamics in forest ecosystems of Central Russia under different climate change scenarios and forest management regimes, Ecol. Model., 2011, vol. 222, pp. 2262–75.CrossRefGoogle Scholar
  32. 32.
    Shumakov, V.S., Implementation of mineral fertilizers in forests of the Soviet Union, Lesn. Khoz., 1975, no. 10, pp. 12–17.Google Scholar
  33. 33.
    Sokolovskii, V.G., Atmospheric air in Russia, Isp. Okhrana Prir. Resur. Ross., 2004, no. 6, pp. 88–100.Google Scholar
  34. 34.
    (Forest Management in the Pine Forests of Southern Taiga Subzone), Kabanova, N.E., Ed., Moscow: Nauka, 1969.Google Scholar
  35. 35.
    Spiecker, H., Meilikainen, R., Kohl, M., and Skorgsgaard, J.P., Growth Trends in European Forests, New York: Springer-Verlag, 1996.Google Scholar
  36. 36.
    The European Nitrogen Assessment: Sources, Effects, and Policy Perspectives, Sutton, M., Howard, C., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., and Grizzetti, B., Eds., Cambridge, UK: Cambridge Univ. Press, 2011.Google Scholar
  37. 37.
    Tyaganov, D.N., Fitoindikatsiya ekologicheskikh rezhimov v podzone khvoino-shirokolistvennykh lesov (Phytoindication of Ecological Regimes in Subzone of Coniferous-Broadleaved Forests), Moscow: Nauka, 1983.Google Scholar
  38. 38.
    Zubkova, E.V., Khanina, L.G., Grokhlina, T.I., and Dorogova, Yu.A., Komp’yuternaya obrabotka geobotanicheskikh opisanii po ekologicheskim shkalam s pomoshch’yu programmy EcoScaleWin: Uchebnoe posobie (Manual on Digital Processing of Geobotanical Descriptions Using Ecological Scales and EcoScaleWin Software), Yoshkar-Ola, 2008.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. V. Priputina
    • 1
  • E. V. Zubkova
    • 1
  • A. S. Komarov
    • 1
  1. 1.Institute of Physicochemical and Biological Problems of Soil ScienceRussian Academy of SciencesPushchinoRussia

Personalised recommendations