Contemporary Problems of Ecology

, Volume 8, Issue 2, pp 237–242 | Cite as

Terahertz radiation improves adaptation characteristics in Drosophila melanogaster

Article

Abstract

An investigation into the effect of nonionizing terahertz radiation (0.1–10 THz) on living organisms is urgent due to the recent development of modern technologies employing such radiation. The aim of this study was to establish the impact of terahertz radiation on successive generations of fruit flies. The effects of terahertz radiation on the survival ability and lifespan of the Oregon-R strain of Drosophila melanogaster proved to be diverse: they were negative or neutral at early life stages and positive at late stages. The female flies exposed to the radiation showed increased survival rate during the second half of the life of imago. The males demonstrated low sensitivity to the radiation. There were no significant differences noted in the dynamics of maturation and total number of offspring between the female flies that were exposed to the radiation and those that were not. The results of the study practically did not depend on the sex and maturity stage of the oocytes irradiated.

Keywords

biological effects of terahertz radiation drosophila lifespan survival rate sexual dimorphism oocyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrov, B.S., Gelev, V., Bishop, A.R., Usheva, A., and Rasmussen, K.O., DNA breathing dynamics in the presence of a terahertz field, Phys. Lett. A, 2010, vol. 374, no. 10, p. 1214.CrossRefPubMedCentralPubMedGoogle Scholar
  2. Alexandrov, B.S., Phipps, M.L., Alexandrov, L.B., Booshehri, L.G., Erat, A., Zabolotny, J., Mielke, C.H., Chen, H., Rodriguez, G., Rasmussen, K., Martinez, J.S., Bishop, A.R., and Usheva, A., Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells, Sci. Rep., 2013, no. 3, p. 1184.CrossRefPubMedCentralPubMedGoogle Scholar
  3. Antsygin, V.D. Mamrashev, A.A. Nikolaev, N.A., and Potaturkin, O.I., Small-size terahertz spectrometer using the second harmonic of a femtosecond fiber laser, Autom. Monit. Meas. (Engl. Transl.), 2010, vol. 46, no. 3, pp. 294–300.Google Scholar
  4. Bland, J.M. and Altman, D.G., The logrank test, Br. Med. J., 2004, vol. 328, no. 7447, p. 1073.CrossRefGoogle Scholar
  5. Bock, J., Fukuyo, Y., Kang, S., Phipps, M.L., Alexandrov, L.B., Rasmussen, K., Bishop, A.R., Rosen, E.D., Martinez, J.S., Chen, H.T., Rodriguez, G., Alexandrov, B.S., and Usheva, A., Mammalian stem cells reprogramming in response to terahertz radiation, PLoS One, 2010, vol. 5, no. 12, p. 15806.CrossRefGoogle Scholar
  6. Bondar, N.P., Kovalenko, I.L., Avgustinovich, D.F., Kudryavtseva, N.N., and Khamoyan, A.G., Behavioral effect of terahertz waves in male mice, Bull. Exp. Biol. Med., 2008, vol. 145, no. 4, pp. 401–405.CrossRefPubMedGoogle Scholar
  7. Demidova, E.V., Goryachkovskaya, T.N., Malup, T.K., Bannikova, S.V., Semenov, A.I., Vinokurov, N.A., Kolchanov, N.A., Popik, V.M., and Peltek, S.E., Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GTP biosensor cells, Bioelectromagnetics, 2013, vol. 34, no. 1, pp. 15–21.CrossRefPubMedGoogle Scholar
  8. Fedorov, V.I., Biological effects of electromagnetic radiation of submillimeter part of terahertz range, Biomed. Radioelektron., 2011, no. 2, pp. 17–27.Google Scholar
  9. Fedorov, V.I., Pogodin, A.S., Dubatolova, T.D., Varlamov, A.V., Leont’ev, K.V., and Khamoian, A.G., Comparative study of effect of infrared, submillimeter, and millimeter electromagnetic radiation on wing somatic mutations in Drosophila melanogaster induced by gamma-irradiation, Biophysics (Moscow), 2001, vol. 46, no. 2, pp. 298–302.Google Scholar
  10. Horne-Badovinac, S. and Bilder, D., Mass transit: epithelial morphogenesis in the Drosophila egg chamber, Dev. Dyn., 2005, vol. 232, pp. 574–559.CrossRefGoogle Scholar
  11. Kirichuck, V.F., Ivanov, A.N., Antipova, O.N., Krenickiy, A.P., Mayborodin, A.V., and Tupikin, V.D., Sexspecific differences in changes of disturbed functional activity of platelets in albino rats under the effect of terahertz electromagnetic radiation at nitric oxide frequencies, Bull. Exp. Biol. Med., 2008, vol. 145, no. 1, pp. 75–77.CrossRefPubMedGoogle Scholar
  12. Mosse, I.B., Anoshenko, I.P., Glushkova, I.V., Aksyutik, T.V., Kamysh, N.A., Kasinskaya, S.I., Mikhailova, M.E., and Tikhanovich, N.I., Genetic monitoring of natural Drosophila populations in radiation contaminated regions of Belarus, Rad. Biol. Radioekol., 2006, vol. 46, no. 3, pp. 287–295.Google Scholar
  13. Nuzhdin, S.V., Pasyukova, E.G., Dilda, Ch.L., Zeng, Z.B., and Mackay, T.F.C., Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 9734–9739.CrossRefPubMedCentralPubMedGoogle Scholar
  14. Ogienko, A.A., Fedorova, S.A., and Baricheva, E.M., Basic aspects of ovarian development in Drosophila melanogaster, Russ. J. Genet., 2007, vol. 43, no. 10, pp. 1120–1134.CrossRefGoogle Scholar
  15. Rauschenbakh, I.Yu. Adon’eva, N.V. Gruntenko, N.E. Karpova, E.K., and Faddeeva, N.V., Juvenile hormone controls oviposition and fertility in Drosophila virilis during starvation, Russ. J. Dev. Biol., 2004, vol. 35, no. 6, pp. 370–374.CrossRefGoogle Scholar
  16. Rokitskii, P.F., Biologicheskaya statistika (Biological Statistics), Minsk: Vysheishaya Shkola, 1973.Google Scholar
  17. Weisman, N.Ya. and Golubovsky, M.D., Survival and longevity depend on oogenesis stress and the dose of the lgl tumor suppressor: studies on Drosophila as a model, Dokl. Biol. Sci., 2008, vol. 419, no. 1, pp. 90–94.CrossRefPubMedGoogle Scholar
  18. Wilmink, G.J. and Grundt, L.E., Current state of research on biological effects of terahertz radiation, J. Infrared, Millimeter, Terahertz Waves, 2011, vol. 32, no. 10, pp. 1074–1122.CrossRefGoogle Scholar
  19. Wilmink, G.J., Ibey, B.L., Roth, C.L., Vincelette, R.L., Rivest, B.N., Horn, C.B., Bernhard, J., Ronerson, D., and Roach, W., Determination of death thresholds and identification of terahertz (THz)-specific gene expression signatures, in Proc. SPIE, Optical Interactions with Tissues and Cells XXI, 2010, vol. 7562, pp. 75620K–75620K-8.Google Scholar
  20. Zalyubovskaya, N.P., Assessment of the effect of microwaves of millimeter and submillimeter diapason on different biological objects, Extended Abstracts of Cand. Sci. (Biol.) Dissertation, Kharkov, 1970.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. Ya. Weisman
    • 1
  • V. I. Fedorov
    • 2
  • E. F. Nemova
    • 2
  1. 1.Institute of Cytology and GeneticsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Laser Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations