Advertisement

Contemporary Problems of Ecology

, Volume 7, Issue 7, pp 788–796 | Cite as

Dynamics of spectral brightness of the species/age structure for groups of forest types on Landsat satellite images

Article

Abstract

The articles presents the results from studying the dependence upon the spectral characteristics of a Landsat 5/TM multispectral high-resolution space image and the species/age structure of forest ecosystems. The parameters that affect the variability of the spectral brightness of forest ecosystems on space images are described for green-moss (hilocominosa), various-grass (larioherbosa), large-grass (magnoherbosa) and sphagnous (sphagnosa) groups of forest types in the Angara taiga region of Eastern Siberia. The trends of dynamics of spectral brightness are revealed for the groups of forest types, depending on the age and share of coniferous species in the structure of forest stands based on the ecological and dynamic analysis of forests, which grow in identical vegetation conditions.

Keywords

groups of forest types forest-forming process species/age structure ecological-dynamic series spectral brightness multispectral space images age dynamics share of coniferous species in the structure of forest stands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartalev, S.A., Zhirin, V.M., and Ershov, D.V., The comparative analysis of “Kosmos-1939”, spot and “Landsat-TM” satellite systems data for boreal forests study, Issled. Zemli iz Kosmosa, 1995, no. 1, pp. 101–114.Google Scholar
  2. 2.
    Zhirin, V.M., Knyazeva, S.V., and Eydlina, S.P., Remote maintenance of forest-forming process in taiga forests after their cutting in the Russian Plain, Lesovedenie, 2011, no. 6, pp. 29–38.Google Scholar
  3. 3.
    Zhirin, V.M., Knyazeva, S.V., Eydlina, S.P., and Zukert, N.V., Seasonal informative properties of multispectral high-resolution space images for studying of forest species and age dynamics, Sovrem. Probl. Dist. Zond. Zemli Kosmosa, 2012b,vol. 9, no. 1, pp. 87–95.Google Scholar
  4. 4.
    Zhirin, V.M., Knyazeva, S.V., and Eydlina, S.P., Features of disturbed forest cover rehabilitation in taiga forests of the Russian Plain, in Raznoobrazie i monitoring lesnykh ekosistem Rossii (Diversity and Monitoring of Forest Ecosystems in Russia), Isaev, A.S., Ed., Moscow: KMK, 2012a,vol. 1, part 8, pp. 352–381.Google Scholar
  5. 5.
    Zhirin, V.M., Knyazeva, S.V., and Eydlina, S.P., The eco-dynamical study of forest-forming process with space imagery, Lesovedenie, 2013, no. 5, pp. 76–85.Google Scholar
  6. 6.
    Kravtsova, V.I. and Loshkareva, A.R., Study of northern boundary of forest using satellite images with different resolutions, Vestn. Mosk. Univ., Ser. 5, 2010, no. 6, pp. 49–57.Google Scholar
  7. 7.
    Krylov, A.M., Sobolev, A.A., and Vladimirova, N.A., Identification of the spots of bark beetles in Moscow oblast using Landstat images, Vestn. Mosk. Gos. Univ. Lesa, 2011, no. 4, pp. 54–60.Google Scholar
  8. 8.
    Malysheva, N.V., Avtomatizirovannoe deshifrirovanie aerokosmicheskikh izobrazhenii lesnykh nasazhdenii (Automated Photointerpretation of Satellite Images of Forests), Moscow: Mosk. Gos. Univ. Lesa, 2012.Google Scholar
  9. 9.
    Monitoring biologicheskogo raznoobraziya lesov Rossii: metodologiya i metody (Methods and Techniques for Monitoring of Biological Diversity of Russian Forests), Isaev, A.S., Ed., Moscow: Nauka, 2008.Google Scholar
  10. 10.
    Rysin, L.P., Diversity of coniferous forests in Russia at ecosystem level, in Raznoobrazie i monitoring lesnykh ekosistem Rossii (Diversity and Monitoring of Forest Ecosystems in Russia), Isaev, A.S., Ed., Moscow: KMK, 2013,vol. 2, part 11, pp. 14–41.Google Scholar
  11. 11.
    Sochilova, E.N. and Ershov, D.V., Analysis of possible determination of the wood reserves using Landsat ETM+ satellite data, Sovrem. Probl. Dist. Zond. Zemli Kosmosa, 2012,vol. 9, no. 3, pp. 277–282.Google Scholar
  12. 12.
    Terekhin, E.A., Implementation of satellite imaging data for analysis of long-term changes in the forests of Belgorod oblast, Sovrem. Probl. Dist. Zond. Zemli Kosmosa, 2013,vol. 10, no. 2, pp. 70–80.Google Scholar
  13. 13.
    Kharuk, V.I., Ranson, K.G., Kuz’michev, V.V., Burenina, T.A., Tikhomirov, A.Yu., and Im S.T., Landsat images applied for analysis of gypsy moths in Southern Siberia, Issled. Zemli Kosmosa, 2002, no. 4, pp. 79–90.Google Scholar
  14. 14.
    Gerylo, G.R., Hall, R.J., Franklin, S.E., and Smith, L., Empirical relations between Landsat TM spectral response and forest stands near Fort Simpson, Northwest territories, Canada, Can. J. Rem. Sens., 2002, vol. 28, no. 1, pp. 68–79.CrossRefGoogle Scholar
  15. 15.
    Michishita, R., Xu, B., and Gong, P., Spectral mixture analysis for bi-sensor wetland mapping using Landsat TM and Terra MODIS data, Int. J. Remote Sens., 2012, vol. 33, no. 11, pp. 3373–3402.CrossRefGoogle Scholar
  16. 16.
    Dim, J.R., Kajiwara, K., and Honda, Y., Radiometric signature and spatial variability of the vegetation coverage of a boreal forest, Int. J. Remote Sens., 2008, vol. 29, no. 23, pp. 6851–6871.CrossRefGoogle Scholar
  17. 17.
    Thomas, V., Noland, T., Treitz, P., and Mccaughey, J.H., Leaf area and clumping indices a boreal mixed-wood forest: Lidar, Hyperspectral and Landsat models, Int. J. Remote Sens., 2011, vol. 32, no. 23, pp. 8271–8297.CrossRefGoogle Scholar
  18. 18.
    Wynne, R., Oderwald, R., Reams, G., and Scervani, J., Optical remote sensing for forest area estimation, J. For., 2000, no. 5, pp. 31–36.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. M. Zhirin
    • 1
  • S. V. Knyazeva
    • 1
  • S. P. Eydlina
    • 1
  1. 1.Centre for Problems of Ecology and Productivity of ForestsMoscowRussia

Personalised recommendations