Contemporary Problems of Ecology

, Volume 7, Issue 7, pp 743–751 | Cite as

Factors of spatiotemporal variability of CO2 fluxes from soils of southern taiga spruce forests of Valdai

  • D. V. Karelin
  • A. V. Pochikalov
  • D. G. Zamolodchikov
  • M. L. Gitarskii
Article

Abstract

Factors determining the spatiotemporal variability of carbon dioxide emission from soil on various scales (from hours and days to seasons of the year and multiple years, and from microbiotopes to mesobiotopes) were identified using the results of a five-year study in the southern taiga spruce forest at Valdai highlands (Novgorod oblast). The air temperature close to the soil and that of the top layer of the soil, the humidity of the top layer of the soil, the precipitation during the preceding period, the litter thickness, the minimal distance to the trunks of dead standing and fallen spruce trees, and the coefficient of enhancement of microbial respiration were among the most significant factors. The soil temperature at a depth of 1 cm was the only variable of significance for both spatial and temporal distribution. The necessity of taking both spatial and temporal factors into account upon the prediction of the estimated value of CO2 emission by the soil has been demonstrated.

Keywords

soil respiration CO2 emission from soil spatial and temporal variability boreal ecosystems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yevdokimov, I.V., Larionova, A.A., Lopes de Gerenyu, V.O., Schmitt, M., and Bahn, M., Experimental assessment of the contribution of plant root respiration to the emission of carbon dioxide from the soil, Eurasian Soil Sci., 2010, vol. 43, no. 12, pp. 1373–1381.CrossRefGoogle Scholar
  2. 2.
    Kudeyarov, V.N., Zavarzin, G.A., Blagodatskii, S.A., Borisov, A.V., Voronin, P.Yu., Demkin, V.A., Demkina, T.S., Yevdokimov, I.V., Zamolodchikov, D.G., Karelin, D.V., Komarov, A.S., Kurganova, I.N., Larionov, A.A., Lopes de Gerenyu, V.O., Utkin, A.I., and Chertov, O.G., Puly i potoki ugleroda v nazemnykh ekosistemakh Rossii (Carbon Reserves and Flows in Terrestrial Ecosystems in Russia), Moscow: Nauka, 2007.Google Scholar
  3. 3.
    Kurganova, I.N. and Kudeyarov, V.N., Assessment of carbon dioxide effluxes from soils of the taiga zone of Russia, Eurasian Soil Sci., 1998, vol. 31, no. 9, pp. 954–965.Google Scholar
  4. 4.
    Kurganova, I.N., Lopes de Gerenyu, V.O., Myakshina, T.N., Sapronov, D.V., and Kudeyarov, V.N., CO2 emission from soils of various ecosystems of the southern taiga zone: data analysis of continuous 12-year monitoring, Dokl. Biol. Sci., 2011, vol. 436, no. 1, pp. 56–58.PubMedCrossRefGoogle Scholar
  5. 5.
    Lopes de Gerenyu, V.O., Kurganova, I.N., Rozanova, L.N., and Kudeyarov, V.N., Annual emission of carbon dioxide from soils of the southern taiga zone of Russia, Eurasian Soil Sci., 2001, vol. 34, no. 9, pp. 931–944.Google Scholar
  6. 6.
    Safonov, S.S., Karelin, D.V., Grabar, V.A., Latyshev, B.A., Grabovskii, V.I., Uvarova, N.E., Zamolodchikov, D.G., Korotkov, V.N., and Gitarskii, M.L., Release of carbon dioxide during decomposition of brushwood in southern taiga firwood, Lesovedenie, 2012, no. 5, pp. 44–49.Google Scholar
  7. 7.
    Allison, S.D. and Treseder, K.K., Climate change feed-backs to microbial decomposition in boreal soils, Fungal Ecol., 2011, vol. 4, pp. 362–374.CrossRefGoogle Scholar
  8. 8.
    Bond-Lamberty, B. and Thomson, A., Temperature-associated increases in the global soil respiration record, Nature, 2010,vol. 464, pp. 579–582.PubMedCrossRefGoogle Scholar
  9. 9.
    Borken, W., Xu, Y.-J., Davidson, E.A. and Beese, F., Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests, Global Change Biol., 2002, vol. 8, pp. 1205–1216.CrossRefGoogle Scholar
  10. 10.
    Chen, S., Huang, Y., Zou, J., Shen, Q., Hu, Z., Qin, Y., Chen, H., and Pan, G., Modeling interannual variability of global soil respiration from climate and soil properties, Agric. For. Meteorol., 2010, vol. 150, pp. 590–605.CrossRefGoogle Scholar
  11. 11.
    Concilio, A., Chen, J., Ma, S., and North, M., Precipitation drives interannual variation in summer soil respiration in a Mediterranean-climate, mixed-conifer forest, Clim. Change, 2009,vol. 92, pp. 109–122.CrossRefGoogle Scholar
  12. 12.
    Curiel Yuste, J., Janssens, I.A., Carrara, A., Meiresonne, L., and Ceulemans, R., Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest, Tree Physiol., 2003, vol. 23, pp. 1263–1270.PubMedCrossRefGoogle Scholar
  13. 13.
    De Forest, J.L., Noormets, A., McNulty, S.G., Sun, G., Tenney, G., and Chen, J., Phenophases alter the soil respiration-temperature relationship in an oak-dominated forest, Int. J. Biometeorol., 2006, vol. 51, pp. 135–144.CrossRefGoogle Scholar
  14. 14.
    Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C., and Wisniewski, J., Carbon pools and flux of global forest ecosystems, Science, 1994,vol. 263, pp. 185–190.PubMedCrossRefGoogle Scholar
  15. 15.
    Dornbush, M.E. and Raich, J.W., Soil temperature, not aboveground plant productivity, best predicts intra-annual variations of soil respiration in central Iowa grasslands, Ecosystems, 2006,vol. 9, pp. 909–920.CrossRefGoogle Scholar
  16. 16.
    Hibbard, K.A., Law, B.E., Reichstein, M., and Sulzman, J., An analysis of soil respiration across northern hemisphere temperate ecosystems, Biogeochemistry, 2005,vol. 73, pp. 29–70.CrossRefGoogle Scholar
  17. 17.
    Gaumont-Guay, D., Black, T.A., Barr, A.G., Griffis, T.J., Jassal, R.S., Crishnan, P., Grant, N., and Nesic, Z., Eight years of forest-floor CO2 exchange in a boreal black spruce forest: spatial integration and long-term temporal trends, Agric. For. Meteorol., 2014, vol. 184, pp. 25–35.CrossRefGoogle Scholar
  18. 18.
    GLOBE Carbon Cycle, Durham, University of New Hampshire, 2011. http://globecarboncycle.unh.edu
  19. 19.
    Keith, H., Jacobsen, K.L., and Raison, R.J., Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest, Plant Soil, 1997,vol. 190, pp. 127–141.CrossRefGoogle Scholar
  20. 20.
    Khomik, M., Altaf Arain, M., and McCaughley, J.H., Temporal and spatial variability of soil respiration in a boreal mixed-wood forest, Agric. For. Meteorol., 2006, vol. 140, pp. 244–256.CrossRefGoogle Scholar
  21. 21.
    Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L., and Merchant, J.W., Development of a global land cover characteristics database and IGBP discover from 1 km AVHRR data, Int. J. Remote Sens., 2000, vol. 21, pp. 1303–1330.CrossRefGoogle Scholar
  22. 22.
    Martin, J.G. and Bolstad, P.V., Variation of soil respiration at three spatial scales: components within measurements, intra-site variation and patterns on the landscape, Soil Biol. Biochem., 2009, vol. 41, pp. 530–543.CrossRefGoogle Scholar
  23. 23.
    Ngao, J., Epron, D., Delpierrec, N., Bréda, N., Granier, A., and Longdoz, B., Spatial variability of soil CO2 efflux linked to soil parameters and ecosystem characteristics in a temperate beech forest, Agric. For. Meteorol., 2012, vols. 154–155, pp. 136–146.CrossRefGoogle Scholar
  24. 24.
    Oishi, C., Palmroth, S., Butnor, J.R., Johnsen, K.H., and Oren, R., Spatial and temporal variability of soil CO2 efflux in three proximate temperate forest ecosystems, Agric. For. Meteorol., 2013, vols. 171–172, pp. 256–269.CrossRefGoogle Scholar
  25. 25.
    Raich, J.W. and Potter, C.S., Global patterns of carbon dioxide emissions from soils, Global Biogeochem. Cycles, 1995,vol. 9, pp. 23–36.CrossRefGoogle Scholar
  26. 26.
    Raich, J. W., Potter, C.S., and Bhagawati, D., Interannual variability in global soil respiration, 1980–1994, Global Change Biol., 2002, vol. 8, pp. 800–812.CrossRefGoogle Scholar
  27. 27.
    Raich, J.W. and Schlesinger, W.H., The Global carbon dioxide flux in soil respiration and its relation to vegetation and climate, Tellus B, 1992,vol. 44, pp. 81–99.CrossRefGoogle Scholar
  28. 28.
    Reichstein, M., Rey, A., Freibauer, A., Tenhunen, J., Valentini, R., Banza, J., Casals, P., Grünzweig, J.M., Irvine, J., Joffre, R., Law, B.E., Loustau, D., Miglietta, M., Oechel, W., Ourcival, J.-M., Pereira, J.S., Peressotti, A., Ponti, F., Ye, Qi, Rambal, S., Rayment, M., Romanya, J., Rossi, F., Tedeschi, V., Tirone, G., Ming, Xu, and Yakir, D., Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices, Global Biogeochem. Cycles, 2003,vol. 17, no. 4, p. 1104. doi: 10.1029/2003GB002035CrossRefGoogle Scholar
  29. 29.
    Ryan, M.G. and Law, B.E., Interpreting, measuring and modeling soil respiration, Biogeochemistry, 2005,vol. 73, pp. 3–27.CrossRefGoogle Scholar
  30. 30.
    Saiz, G., Black, K., Reidy, B., Lopez, S., and Farrell, E.P., Assessment of soil CO2 efflux and its components using a process-based model in a young temperate forest site, Geoderma, 2007,vol. 139, pp. 79–89.CrossRefGoogle Scholar
  31. 31.
    The LI-6200 Primer. An Introduction to Operating the LI-6200 Portable Photosynthesis System, Lincoln, USA: LI-COR, 1989.Google Scholar
  32. 32.
    Wei, W., Weile, C., and Shaopeng, W., Forest soil respiration and its heterotrophic and autotrophic components: global patterns and responses to temperature and precipitation, Soil Biol. Biochem., 2010, vol. 42, pp. 1236–1244.CrossRefGoogle Scholar
  33. 33.
    Xu, M. and Qi, Y., Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California, Global Change Biol., 2001, vol. 7, pp. 667–677.CrossRefGoogle Scholar
  34. 34.
    Yan, J., Zhang, D., Zhou, G., and Liu, J., Soil respiration associated with forest succession in subtropical forests in Dinghushan Biosphere Reserve, Soil Biol. Biochem., 2009, vol. 41, pp. 991–999.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. V. Karelin
    • 1
    • 2
    • 3
  • A. V. Pochikalov
    • 2
  • D. G. Zamolodchikov
    • 1
    • 2
  • M. L. Gitarskii
    • 3
  1. 1.Centre for Problems of Ecology and Productivity of ForestsMoscowRussia
  2. 2.Department of Biology, Chair of General EcologyMoscow State UniversityMoscowRussia
  3. 3.Institute of Global Climate and Ecology of the Federal Service for Hydrometeorology and Environmental MonitoringRussian Academy of SciencesMoscowRussia

Personalised recommendations