Contemporary Problems of Ecology

, Volume 7, Issue 4, pp 484–488 | Cite as

Heterogeneity of lipids and fatty acids of fingerlings of Atlantic salmon Salmo salar L. different in weight and size

  • Z. A. Nefedova
  • S. A. Murzina
  • A. E. Veselov
  • P. O. Ripatti
  • N. N. Nemova
Article

Abstract

Lipid and fatty acid spectra have been investigated in fingerlings of Atlantic salmon distinguished by weight and length characteristics and degree of fatness. Heterogeneity in terms of fatty acids in the studied groups of fingerlings is shown which indicates the differences in the rates of biochemical reactions of synthesis and modification of lipids and fatty acids caused by phenotypic diversity. Specificities of the metabolic processes in the studied groups of salmon fingerlings are related to the qualitative variety of nutrition spectra and the availability of food in the biotope.

Keywords

Atlantic salmon lipids fatty acids ontogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrosimova, N.A., Biryukova, A.A., and Maraduda, A.Yu., Dependence of fertilization rate of eggs of bester on its biochemical composition, in Mater. 1-i nauchn. prakt. konf. “Problemy sovremennogo tovarnogo osetrovodstva,”. Tezisy dokladov (Proc. 1 Sci.-Pract. Conf. “Problems of Modern Commercial Sturgeon Farming,” Abstracts of Papers), Astrakhan, 1999, pp. 102–103.Google Scholar
  2. Arts, M.T. and Kohler, C.C., Health and condition in fish: the influence of lipids on membrane competency and immune response, in Lipids in Aquatic Ecosystems, Arts, M.T., Kainz, M., and Brett, M.T., Eds., New York: Springer, 2009.Google Scholar
  3. Budge, S.M. and Parrish, C.C., Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids, Org. Geochem., 1998, vol. 29, pp. 1547–1559.CrossRefGoogle Scholar
  4. Castell, J.D., Sinnhuber, R.O., Wales, J.H., and Lee, D.J. Essential fatty acid requirement of the rainbow trout (Salmo gairdneri): growth, feed conversion and some gross deficiency symptoms, J. Nutr., 1972, no. 102, pp. 77–86.Google Scholar
  5. Downer, R.G.H., Lipid metabolism, in Comprehensive. Insect Physiology, Biochemistry, and Pharmacology: Biochemistry, Kerkut, G.A. and Gilbert, L.I., Eds., Oxford: Pergamon Press, 1985, vol. 10, pp. 77–113.Google Scholar
  6. Engelbrecht, F.M., Mari, F., and Anderson, J.T., Cholesterol determination in serum. A rapid direction method, S. Afr. Med. J., 1974. V. 48, no. 7, pp. 250–356.PubMedGoogle Scholar
  7. Falk-Petersen, S., Hagen, W., Kattner, G., Clarke, A., and Sargent, J., Lipids, trophic relations, and biodiversity in Arctic and Antarctic krill, Can. J. Fish. Aquat. Sci., 2000, vol. 57,suppl. 3, pp. 178–191.CrossRefGoogle Scholar
  8. Folch, J., Lees, M., and Sloane Stanley, G.H., A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 1957, vol. 226, no. 5, pp. 497–509.PubMedGoogle Scholar
  9. Galkina, O.V., Peculiarities of free radical lipid oxidation in the central nervous system and involved hormones, in Biokhimicheskie i molekulyarno-biologicheskie osnovy. fiziologichekikh funktsii. Nervanaya sistema (Biochemical and Molecular-Biological Principles of Physiological Functions: Nervous System), Eshchenko, N.D. and Skvortsevich, E.G., Eds., St. Petersburg: St.-Peterb. Gos. Univ., 2004, no. 37, pp. 3–17.Google Scholar
  10. Gladyshev, M.I., Sushchik, N.N., Kravchuk, E.S., Kalacheva, G.S., Ivanova, E.A., and Ageev, A.V., Seasonal changes in the standing stock of essential polyunsaturated fatty acids in the biomass of phyto- and zoobenthos on a littoral station of the Yenisei River, Dokl. Biol. Sci., 2005, vol. 403, nos. 1–6, pp. 267–268.PubMedCrossRefGoogle Scholar
  11. Gubler, E.V. and Genkin, A.A., Primenenie kriteriev. neparametrichekoi statistiki dlya otsenki razlichii dvukh. grupp nablyudenii v mediko-biologicheskikh issledovaniyakh (Implementation of Criteria of Nonparametric Statistics for Assessment of Deviations between Two Groups in Medical-Biological Studies), Moscow: Meditsina, 1969.Google Scholar
  12. Hochachka, P.W. and Somero, G.N., Biochemical Adaptation: Mechanism and Process in Physiological Evolution, Oxford Univ. Press, 2002.Google Scholar
  13. Kazakov, R.V., Biologicheskie osnovy razvedeniya atlanticheskogo lososya (Biological Principles of Farming of Atlantic Salmon), Moscow: Legk. Pishch. Prom-st, 1982.Google Scholar
  14. Kreps, E.M., Lipidy kletochenykh membran. Evolyutsiya lipidov mozga. Adaptatsionnaya funktsiya lipidov (Lipids of Cell Membranes. Evolution of the Brain Lipids. Adaptation Function of Lipids), Leningrad: Nauka, 1981.Google Scholar
  15. Lee, D.J., Roehm, J.N., Yu, T.C., and Sinnhuber, R.O., Effect of omega-3 fatty acids on the growth rate of rainbow trout, Salmo gairdneri, J. Nutr., 1967, no. 92, pp. 93–98.Google Scholar
  16. Lopukhin, Yu.M., Archakov, A.I., Vladimirov, Yu.A., and Kogan, E.M., Kholesterinoz (Cholesterol Accumulation in an Organism), Moscow: Meditsina, 1985.Google Scholar
  17. Meinhelt, T., Sehulz, C., et al., Dietary fatty acid composition influences the fertilization rate of zebrafish (Danio. rerio Hamilton-Buchanan), J. Appl. Ichthyol., 1999, vol. 15, no. 1, pp. 19–23.CrossRefGoogle Scholar
  18. Murzina, S.A., Nefedova, Z.A., Nemova, N.N., Ripatti, P.O., and Pekkoeva, S.N., Specific fatty acid status in the White Sea herring from different Bays of the White Sea in regard to ecological factors: role of fatty acids in ecological and biochemical adaptions of fishes in sub-Arctic, in The Fourth Int. Conf. “Bioenvironment, Biodiversity and Renewable Energies. “BIONATURE,” 2013, pp. 9–12.Google Scholar
  19. Novak, J., Quantitative Analysis by Gas Chromatography, New York: Marcel Dekker, 1976.Google Scholar
  20. Parrish, C.C., Essential fatty acids in aquatic food webs, in Lipids in Aquatic Ecosystems, Arts, M.T., Kainz, M., and Brett, M.T., Eds., New York: Springer, 2009.Google Scholar
  21. Pavlov, D.S., Nefedova, Z.A., Veselov, A.E., Nemova, N.N., Ruokolainen, T.R., Vasil’eva, O.B., and Ripatti, P.O., Lipid status of fingerlings of the Atlantic salmon Salmo salar from different microbiotopes of the Varzuga River, J. Ichthyol., 2008, vol. 48, no. 8, pp. 648–654.CrossRefGoogle Scholar
  22. Pavlov, D.S., Nefedova, Z.A., Veselov, A.E., Nemova, N.N., Ruokolainen, T.P., Vasil’eva, O.B., and Ripatti, P.O., Age dynamics of lipid status of juveniles of Atlantic salmon (Salmo salar L.) from the Varzuga river, J. Ichthyol., 2009, vol. 49, no. 11, pp. 1073–1080.CrossRefGoogle Scholar
  23. Rabinovich, A.L., Kornilov, V.V., Balabaev, N.K., Leermakers, F.A.M., and Filippov, F.V., Properties of unsaturated phospholipid bilayers: effect of cholesterol, Biochemistry (Moscow) Suppl. Ser. A: Membr. Cell Biol., 2007, vol. 1, no. 4, pp. 343–357.CrossRefGoogle Scholar
  24. Rabinovich, A.L. and Ripatti, P.O., Polyunsaturated carbon lipid chains: structure, properties, and functions, Usp. Sovrem. Biol., 1994, vol. 114, no. 5, pp. 581–591.Google Scholar
  25. Reiser, R., Stevenson, B., Kayama, M., et al., The influence of dietary fatty acid and environmental temperature on the fatty acid composition of teleost fish, J. Am. Oil. Chem. Soc., 1963, vol. 40, pp. 507–513.CrossRefGoogle Scholar
  26. Sargent, J.R., Bell, J.G., Bell, M.V., et al., Dietary origins and functions of long-chain (n-3) polyunsaturated fatty acids in marine fish, J. Mar. Biotechnol., 1995, no. 3, pp. 26–28.Google Scholar
  27. Shustov, Yu.A., Ekologicheskie aspekty povedeniya molodi. lososevykh ryb v rechnykh usloviyakh (EnvironmentDependent Behavior of Salmon Juveniles in Rivers), St. Petersburg: Nauka, 1995.Google Scholar
  28. Sidorov, V.S., Lizenko, E.I., Bolgova, O.M., and Nefedova, Z.A., Fish lipids. 1. Analysis methods. Tissue specific lipids of European cisco Coregonus albula L., in Lososevye Karelii (Salmonidae) (The Salmons of Karelia (Salmonidae)), Petrozavodsk: Karel. Fil., Akad. Nauk SSSR, 1972, pp. 150–163.Google Scholar
  29. Tishio, T. and Seok-Joong, K., Effects of environmental salinity on lipid classes and fatty acid composition in gills of Atlantic salmon, Bull. Jpn. Soc. Sci. Fish., 1989, vol. 55, no. 8, pp. 1395–1405.CrossRefGoogle Scholar
  30. Tocher, D.R., Metabolism and functions of lipids and fatty acids in teleost fish, Rev. Fish. Sci., 2003, vol. 11, no. 2, pp. 107–184.CrossRefGoogle Scholar
  31. Tsyganov, E.P., Direct methylation method of lipids after thin-layer chromatography without elution of silica gel, Lab. Delo, 1971, no. 8, pp. 490–493.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Z. A. Nefedova
    • 1
  • S. A. Murzina
    • 1
  • A. E. Veselov
    • 1
  • P. O. Ripatti
    • 1
  • N. N. Nemova
    • 1
  1. 1.Institute of Biology, Karelian Research CenterRussian Academy of SciencesPetrozavodskRussia

Personalised recommendations