Advertisement

Contemporary Problems of Ecology

, Volume 7, Issue 2, pp 204–209 | Cite as

Influence of antibiotics (benzylpenicillin, pharmazin, and nystatin) on the number of microorganisms in ordinary chernozem

  • Yu. V. Akimenko
  • K. Sh. Kazeev
  • S. I. Kolesnikov
Article
  • 45 Downloads

Abstract

In model experiments, the influence of pharmaceutical antibiotics (benzylpenicillin, pharmazin, and nystatin) in different doses (100, 300, 450, and 600 mg/kg) on a number of microorganisms of the chernozem region has been studied. All the studied doses of antibiotics had reliable and overwhelming impacts on the amount of soil microorganisms. The time between a dose of antibiotics and a change in the number of microorganisms in the soil is shown to have a linear dependence. The studied groups of soil microorganisms in relation to pharmaceutical antibiotics showed a hierarchy of resistance (high concentration): Azotobacter > amylolytic bacteria > ammonifying bacteria > micromycetes.

Keywords

antibiotics pollution soil microorganisms ordinary chernozem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akimenko, Yu.V., Variability of ecological and biological properties of normal chernozem affected by antibiotics, Mater. VI s”ezda ob-va pochvovedov im. V.V. Dokuchaeva, Vseross. nauchn. konf. s mezhd. uchastiem “Pochvy Rossii: sovremennoe sostoyanie, perspektivy izucheniya i ispol’zovaniya”, Petrozavodsk, 13–18 avgusta 2012 g. (Proc. VI Congr. V.V. Dokuchaev Society of Soil Scientists, All-Russ. Conf. with International Participation “Russian Soils: Current Conditions, Prospective Studies, and Use”, Petrozavodsk, August 13–18, 2012), Petrozavodsk: Karel. Nauchn. Tsentr, Ross. Akad. Nauk, 2012, book 2, pp. 309–311.Google Scholar
  2. Akimenko, Yu.V., Kazeev, K.Sh., and Kolesnikov, S.I., Dynamics of enzymatic activity of normal chernozem polluted by antibiotics, Polythematic Online Scientific Journal of Kuban State Agrarian University, 2013, no. 85, pp. 289–298. http://ej.kubagro.ru/2013/01/pdf/46.pdf Google Scholar
  3. Ananyeva, N.D., Stolnikova, E.V., Susyan, E.A., and Khodzhaeva, A.K., The fungal and bacterial biomass (selective inhibition) and the production of CO2 and N2O by soddy-podzolic soils of postagrogenic biogeocenosis, Eurasian Soil Sci., 2010, vol. 43, no. 11, pp. 1287–1293.CrossRefGoogle Scholar
  4. Cernohorska, L. and Votava, M., Antibiotic synergy against biofilm-forming Pseudomonas aeruginosa, Folia Microbiol., 2008, vol. 53, pp. 57–60.CrossRefGoogle Scholar
  5. Colinas, C., Ingham, E., and Molina, R., Population responses of target and non-target forest soil-organisms to selected biocides, Soil Biol. Biochem., 1994, vol. 26, pp. 41–47.CrossRefGoogle Scholar
  6. Databases of Medical Drugs. http://drugreg.ru/Bases/
  7. Denisova, T.V., Kazeev, K.Sh., Kolesnikov, S.I., and Val’kov, V.F., The influence of gamma radiation on the biological properties of soil (using the example of ordinary Chernozem), Eurasian Soil Sci., 2005, vol. 38, no. 7, pp. 776–779.Google Scholar
  8. Ghosh, G.C., Okuda, T., and Yamashita, N., Occurrence and elimination of antibiotics at four sewage treatment plants in Japan and their effects on bacterial ammonia oxidation, Water Sci. Technol., 2009, vol. 59, pp. 779–786.PubMedCrossRefGoogle Scholar
  9. Gusev, M.V. and Mineeva, L.A., Mikrobiologiya (Microbiology), Moscow: Akademiya, 2003, 4th ed.Google Scholar
  10. Hamscher, G., Sczesny, S., Hoper, H., and Nau, H., Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry, Anal. Chem., 2002, vol. 74, pp. 1509–1518.PubMedCrossRefGoogle Scholar
  11. Kazeev, K.Sh. and Kolesnikov, S.I., Biodiagnostika pochv: metodologiya i metody issledovanii (Biological Assessment of Soils: Methods and Protocols), Rostov-on-Don: Yuzhn. Fed. Univ., 2012.Google Scholar
  12. Khokhrin, S.N., Kormlenie sel’skokhozyaistvennykh zhivotnykh (Feeding of Husbandry Animals), Moscow: Kolos, 2004.Google Scholar
  13. Kolesnikov, S.I., Kazeev, K.Sh., and Val’kov, V.F., The effect of heavy metal contamination on the microbial system in chernozem, Eurasian Soil Sci., 1999, vol. 32, no. 4, pp. 459–465.Google Scholar
  14. Kolesnikov, S.I., Kazeev, K.Sh., and Val’kov, V.F., Influence of heave metal contamination on alkaline-acidic and oxidative-reductive conditions in ordinary chernozem, Agrokhimiya, 2001, no. 9, pp. 54–59.Google Scholar
  15. Kolesnikov, S.I., Spivakova, N.A., Vezdeneeva, L.S., Kuznetsova, Yu.S., and Kazeev, K.Sh., Modeling the effect of chemical pollution on biological properties of hydromorphic solonchaks in the dry steppe zone of southern Russia, Arid Ecosyst., 2011, vol. 1, no. 2, pp. 83–86.CrossRefGoogle Scholar
  16. Kreuzig, R., Kullmer, C., Matthies, B., Holtge, S., and Dieckmann, H., Fate and behavior of pharmaceutical residues in soils, Fresenius Environ. Bull., 2003, vol. 12, pp. 550–558.Google Scholar
  17. Metody pochvennoi mikrobiologii i biokhimii (Methods of Soil Microbiology and Biochemistry), Zvyagintsev, D.G., Ed., Moscow: Mosk. Gos. Univ., 1991.Google Scholar
  18. Rooklidge, S.J., Environmental antimicrobial contamination from terraccumulation and diffuse pollution pathways, Sci. Total Environ., 2004, vol. 325, pp. 1–13.PubMedCrossRefGoogle Scholar
  19. Schmitt, H., van Beelen, P., Tolls, J., and van Leeuwen, C.L., Pollution-induced community tolerance of soil microbial communities caused by the antibiotic sulfachloropyridazine, Environ. Sci. Technol., 2004, vol. 38, pp. 1148–1153.PubMedCrossRefGoogle Scholar
  20. Su, H.-C., Ying, G.-G., Tao, R., Zhang, R.-Q., Zhao, J.-L., and Liu, Y.-S., Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China, Environ. Pollut., 2012, vol. 169, pp. 42–49.PubMedCrossRefGoogle Scholar
  21. Susyan, E.A., Ananyeva, N.D., and Blagodatskaya, E.V., The antibiotic-aided distinguishing of fungal and bacterial substrate-induced respiration in various soil ecosystems, Microbiology (Moscow), 2005, vol. 74, no. 3, pp. 336–342.CrossRefGoogle Scholar
  22. Thiele-Bruhn, S., Seibicke, T., Schulten, H.-R., and Leinweber, P., Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions, J. Environ. Qual., 2004, vol. 33, pp. 1331–1342.PubMedCrossRefGoogle Scholar
  23. Thomashow, L.S., Bonsall, R.F., and Weller, D.M., Antibiotic production by soil and rhizosphere microbes in situ, Manual of Environmental Microbiology Hurst, C.J., Knudson, G.R., McInerney, M.J., Stetzenbach, L.D., and Walter, M.V., Eds., Washington, DC: ASM Press, 1997, pp. 493–499.Google Scholar
  24. Underwood, J.C., Harvey, R.W., Metge, D.W., Repert, D.A., Baumgartner, L.K., Smith, R.L., et al., Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment, Environ Sci. Technol., 2011, vol. 45, pp. 3096–3101.PubMedCrossRefGoogle Scholar
  25. Val’kov, V.F., Kazeev, K.Sh., and Kolesnikov, S.I., Pochvy Yuga Rossii (Soils of Southern Russia), Rostov-on-Don: Everest, 2008.Google Scholar
  26. Wunder, D.B., Tan, D.T., La Para, T.M., and Hozalski, R.M., The effects of antibiotic cocktails at environmentally relevant concentrations on the community composition and acetate biodegradation kinetics of bacterial biofilms, Chemosphere, 2013, vol. 90, pp. 2261–2266.PubMedCrossRefGoogle Scholar
  27. Zhou, L.-J., Ying, G.-G., Zhao, J.-L., Yang, J.-F., Wang, L., Yang, B., et al., Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China, Environ. Pollut., 2011, vol. 159, pp. 1877–1885.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Yu. V. Akimenko
    • 1
  • K. Sh. Kazeev
    • 1
  • S. I. Kolesnikov
    • 1
  1. 1.Faculty of Biological ScienceSouth Federal UniversityRostov-on-DonRussia

Personalised recommendations