Advertisement

Contemporary Problems of Ecology

, Volume 6, Issue 7, pp 683–692 | Cite as

Climate change and wildfires in Russia

  • A. Z. Shvidenko
  • D. G. Schepaschenko
Article

Abstract

The effect of climate change on the distribution, intensity, and transforming role of wild fires is considered. A general overview of the current wild fire regimes (WRs) and impacts on forest ecosystems and environment is provided. One distinctive feature of WRs is the increasing frequency of disastrous wild fires. The application of various remote sensing instruments has shown that the average vegetation wild fire area in Russia for 1998–2010 accounted for 8.2 ± 0.8 × 106 ha, with about two-thirds of wildfires occurring on forest lands and half on the forested lands. The average annual fire carbon balance during the above period was 121 ± 28 Tg C yr−1, including 92 ± 18 Tg C yr−1 emitted from the forested land. The forecasts based on the General Circulation Models suggest the dramatic acceleration of fire regimes by the end of the 21st century. Taking into account the increase in the dryness of the climate and the thawing of permafrost, this will likely lead to a dramatic loss of forested area and the impoverishment of the forest cover over a major part of the forest zone. A transition to adaptive forestry would allow a substantial decrease of the expected losses. This paper takes a brief look at the general principals of adapting forest fire protection system to climate change, which is considered an integral part of the transition to sustainable forest management in Russia.

Keywords

climate change forest fires current and expected fire regimes adaptation of Russian forests to climate change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aerokosmicheskii monitoring katastroficheskikh pozharov v lesakh Vostochnoi Sibiri (Aerospace Monitoring of Disastrous Fires in Eastern Siberia), Sukhinin, A.I., Ed., Krasnoyarsk: Inst. Lesa, Sib. Otd. Ross. Akad. Nauk, 2009.Google Scholar
  2. 2.
    Bartalev, S.A., Development of methods for assessment of conditions and growth of the forests based on satellite monitoring, Extended Abstract of Doctoral Sci. (Tekhn.) Dissertation, Moscow: Inst. Kosm. Issled., Ross. Akad. Nauk, 2007.Google Scholar
  3. 3.
    Valendik, E.N., Environmental conditions of fires in Siberia, Sib. Ekol. Zh., 1996, no. 1, pp. 1–8.Google Scholar
  4. 4.
    Vivchar, A.V., Moiseenko, K.B., and Pankratova, N.V., Estimates of carbon monoxide emissions from wildfires in Northern Eurasia for air quality assessment and climate modeling, Izv.: Atmos. Ocean. Phys., 2010, vol. 46, no. 3, pp. 281–293.Google Scholar
  5. 5.
    Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2012 god (A Report on Climate Peculiarities on the Territory of Russian Federation in 2012), Moscow: Rosgidromet RF, 2013.Google Scholar
  6. 6.
    Zamolodchikov, D.G., Natural and anthropogenic concepts of current climate warming, Vestn. Ross. Akad. Nauk, 2013, vol. 83, no. 3, pp. 227–235.Google Scholar
  7. 7.
    Isaev, A.P., Natural and anthropogenic dynamics of larch forests of cryolite zone in Yakutia, Extended Abstract of Doctoral Sci. (Biol.) Dissertation, Yakutsk: Inst. Biol. Probl. Kriolitozon., Sib. Otd. Ross. Akad. Nauk, 2011.Google Scholar
  8. 8.
    Laverov, N.P. and Lupyan, E.A., Report presented at the Conference devoted to anniversary of Academician of R.Z. Sagdeev, 2013. http://www.forestforum.ru/viewtopic.phpf=9&t=14001 Google Scholar
  9. 9.
    Man’ko, Yu.I. and Gladkova, G.A., Usykhanie eli v svete global’nogo ukhudsheniya sostoyaniya temnokhvoinykh lesov (Drying of Spruce in Conditions of Deterioration Conditions of the Dark Coniferous Forests), Vladivostok: Dal’nauka, 2001.Google Scholar
  10. 10.
    Ostroshenko, V.V., Forest fires at the north of Far East, Severo-Vostochnaya Aziya: vklad v global’nyi lesopozharnyi tsikl (Input of Northeastern Asia into the Global Forest-Fire Cycle), Goldammer, Y.G. and Kondrashov, L.G., Eds., Khabarovsk: Tikookean. Lesn. Forum, 2006, pp. 224–245.Google Scholar
  11. 11.
    Sedykh, V.N., Lesoobrazovatel’nyi protsess (Forest-Formation Process), Novosibirsk: Nauka, 1990.Google Scholar
  12. 12.
    Sokolova, G.V., Fire-hazardous peculiarities of a region, Severo-Vostochnaya Aziya: vklad v global’nyi lesopozharnyi tsikl (Input of Northeastern Asia into the Global Forest-Fire Cycle), Goldammer, Y.G. and Kondrashov, L.G., Eds., Khabarovsk: Tikookean. Lesn. Forum, 2006, pp. 136–163.Google Scholar
  13. 13.
    Sokolova, G.V. and Teteryatnikova, E.P., Study of evolution and a role of large forest fires in Eastern Siberia and Far East in atmospheric processes, in Upravlenie lesnymi pozharami na ekoregional’nom urovne (Management of Forest Fires at the Environmental Regional Level), Moscow: Aleks, 2003, pp. 151–155.Google Scholar
  14. 14.
    Telitsyn, G.P., A problem of large forest fire protection on the Far East, Sb. Tr. — Dal’nevost. Nauchno-Issled. Inst. Lesn. Khoz., 1984, no. 26, pp. 113–119.Google Scholar
  15. 15.
    Telitsyn, G.P., Prophylactic of forest fires on the Far East, in Severo-Vostochnaya Aziya: vklad v global’nyi lesopozharnyi tsikl (Input of Northeastern Asia into the Global Forest-Fire Cycle), Goldammer, Y.G. and Kondrashov, L.G., Eds., Khabarovsk: Tikookean. Lesn. Forum, 2006, pp. 363–386.Google Scholar
  16. 16.
    Shvidenko, A.Z., Shchepashchenko, D.G., and Nilsson, S., The data on current productivity of forest ecosystems of Russia, in Bazovye problemy perekhoda k ustoichivomu upravleniyu lesami Rossii — uchet lesov i organizatsiya lesnogo khozyaistva (General Problems of Transition to Sustainable Management of Russian Forests — Registration of Forests and Organization of Forest Economy), Krasnoyarsk: Inst. Lesa, Sib. Otd. Ross. Akad. Nauk, 2007, pp. 5–35.Google Scholar
  17. 17.
    Shvidenko, A.Z., Shchepashchenko, D.G., Vaganov, E.A., Sukhinin, A.I., Maksyutov, Sh.Sh., McCallum, I., and Lakida, I.P., Influence of natural fires in Russia in 1998-2010 on ecosystems and global carbon budget, Dokl. Ross. Akad. Nauk, 2011, vol. 441, no. 4, pp. 544–548.Google Scholar
  18. 18.
    Sheshukov, M.A. and Brusova, E.V., History of forest fires and fire conditions at the Far East, Severo-Vostochnaya Aziya: vklad v global’nyi lesopozharnyi tsikl (Input of Northeastern Asia into the Global Forest-Fire Cycle), Goldammer, Y.G. and Kondrashov, L.G., Eds., Khabarovsk: Tikookean. Lesn. Forum, 2006, pp. 105–135.Google Scholar
  19. 19.
    Sheshukov, M.A. and Brusova, E.V., Disastrous forest fires in Khabarovsk krai and Sakhalin Peninsula in 1998, Severo-Vostochnaya Aziya: vklad v global’nyi lesopozharnyi tsikl (Input of Northeastern Asia into the Global Forest-Fire Cycle), Goldammer, Y.G. and Kondrashov, L.G., Eds., Khabarovsk: Tikookean. Lesn. Forum, 2006, pp. 201–223.Google Scholar
  20. 20.
    Allen, C.D., Makalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D., Hogg, E.H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci, A., and Cobb, N., A global overview of drought and heat-induced tree mortality reveals emerging climate change risk for forests, For. Ecol. Manage., 2010, vol. 259, pp. 660–684.CrossRefGoogle Scholar
  21. 21.
    Amiro, B.D., Cantin, A., Flanningan, M.D., and de Groot, W.J., Future emissions from Canadian boreal forest fires, Can. J. For. Res., 2009, vol. 39, pp. 383–395.CrossRefGoogle Scholar
  22. 22.
    Balshi, M.S., McGuire, A.D., Zhuang, Q., Melillo, J., Kicklighter, D.W., Kasischke, E., Wirth, C., Flannigan, M., Harden, J., Clein, J.S., Burnside, T.J., McAllister, J., Kurz, W.A., Apps, M., and Shvidenko, A., The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis, J. Geophys. Res., 2007, vol. 112. doi 10.1029/2006JG000380.Google Scholar
  23. 23.
    Barret, K., Kasischke, E.S., McGuire, A.D., Turetsky, M.R., and Kane, E.S., Modeling fire severity in black spruce stands in the Alaskan boreal forest using spectral and non-spectral geospatial data, Remote Sens. Environ., 2010, vol. 114, pp. 1494–1503.CrossRefGoogle Scholar
  24. 24.
    Flannigan, M.D., Stocks, B.J., Turetsky, M.R., and Wotton, B.M., Impact of climate change on fire activity and fire management in the circumboreal forest, Global Change Biol., 2009, vol. 15, pp. 549–560.CrossRefGoogle Scholar
  25. 25.
    Girardin, M.P. and Mudelsee, M., Past and future changes in Canadian boreal wildfire activity, Ecol. Appl., 2008, vol. 18, pp. 391–406.PubMedCrossRefGoogle Scholar
  26. 26.
    Gustafson, E.J., Shvidenko, A.Z., and Sheller, R.M., Effectiveness of forest management strategy to mitigate effects of global change in south-central Siberia, Can. J. For. Res., 2011, vol. 41, pp. 1405–1421.CrossRefGoogle Scholar
  27. 27.
    Gustafson, E.J., Shvidenko, A.Z., Sturtevant, B.S., and Sheller, R.M., Predicting global change effects on forest biomass and composition in south-central Siberia, Ecol. Appl., 2010, vol. 20(3), pp. 700–715.PubMedCrossRefGoogle Scholar
  28. 28.
    Ivanova, G.A., The history of forest fire in Russia, Dendrochronologia, 1998–1999, vols. 16–17, pp. 147–161.Google Scholar
  29. 29.
    Jonsson, M. and Wardle, D.A., Structural equation modeling reveals plant-community drivers of carbon storage in boreal forest ecosystems, Biol. Lett., 2010, vol. 6, pp. 116–119.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kaiser, J.W., Heil, A., Andrea, M.O., Benedetti, A., Chubarova, N., and Jones, L., Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 2012, vol. 9, pp. 527–554.CrossRefGoogle Scholar
  31. 31.
    Kajii, Y., Kato, S., Streets, D.G., Tsai, N.Y., Shvidenko, A., Nilsson, S., McCallum, I., Minko, N.P., Abushenko, N., Altyntsev, D., and Khodzer, T.V., Boreal forest fire in Siberia in 1998: estimation of area burned and emissions of pollutants by AVHRR satellite data, J. Geophys. Res., 2002, vol. 107. doi 10.1029/2001JD001078.Google Scholar
  32. 32.
    Kattsov, V., Govorkova, V., Meleshko, V., Pavlova, T., and Shkolnik, I., Climate change projections for Russia and Central Asia States, 2010. http://neacc.meteoinfo.ru/research/20-research/91-change-climat21-eng Google Scholar
  33. 33.
    Korovin, G.N., Analysis of distribution of forest fires in Russia, Fires in Ecosystems of Boreal Eurasia, Goldammer, J.G. and Furyaev, V.V., Eds., the Hague, Netherlands: Kluwer Academic, 1996, pp. 112–128.CrossRefGoogle Scholar
  34. 34.
    Lentile, L.B., Holden, Z.A., Smith, A.M.S., Falkowski, M.J., Hudak, A.T., Morgan, P., Lewis, S.A., Gessler, P.E., and Benson, N.C., Remote sensing techniques to assess active fire characteristics and post fire effects, Int. J. Wildl. Fire, 2006, vol. 15, pp. 331–336.Google Scholar
  35. 35.
    Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., and Schellnhuber, H.J., Tipping elements in the Earth Climate System, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105(6), pp. 1786–1793.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Malevsky-Malevich, S.P., Molkentin, E.K., Nadyozhina, E.D., and Shklyarevich, O.B., An assessment of potential change in wildfire activity in the Russian boreal forest zone induced by climate warming during the twenty-first century, Clim. Change, 2008, vol. 86, pp. 463–474.CrossRefGoogle Scholar
  37. 37.
    Meleshko, V.P., Katsov, V.M., and Govorkova, V.A., Climate of Russia in the XXI century. 3. Future climate changes obtained from an ensemble of the coupled atmosphere-ocean GCM CMIP3, Meteorol. Hydrol., 2008, vol. 9, pp. 5–22.Google Scholar
  38. 38.
    Mokhov, I.I., Chernokulsky, A.V., and Shkolnik, I.M., Regional model assessments of fire risks under global climate changes, Dokl. Earth Sci., 2006, vol. 411, no. 9, pp. 1485–1488.CrossRefGoogle Scholar
  39. 39.
    Randerson, J.T., Liu, H., Flanner, M.G., Chambers, S.D., Jin, Y., Hess, P.G., Pfister, G., Mack, M.C., Treseder, K.K., Welp, L.R., Chapin, F.S., Harden, J.W., Goulden, M.L., Lyons, E., Neff, J.C., Schuur, E.A., and Zender, C.S., The impact of boreal forest fire on climate warming, Science, 2006, vol. 314, pp. 1130–1132.PubMedCrossRefGoogle Scholar
  40. 40.
    Schepaschenko, D., McCallum, I., Shvidenko, A., Fritz, S., Kraxner, F., and Obersteiner, M., A new hybrid land cover dataset for Russia: a methodology for integrating statistics, remote sensing and in situ information, J. Land Use Sci., 2011, vol. 6(4), pp. 245–259. doi 10.1080/1747423X.2010.511681.CrossRefGoogle Scholar
  41. 41.
    Shvidenko, A., Schepaschenko, D., and McCallum, I., Bottom-Up Inventory of the Carbon Fluxes in Northern Eurasia for Comparisons with COSAT Level 4 Products, Luxemburg: Int. Inst. Appl. Syst. Anal., 2010.Google Scholar
  42. 42.
    Soja, A.J., Cofer, W.A., Shugart, H.H., Sukhinin, A.I., Stackhause, P.W., McRae, D.J., and Conard, S.G., Estimating fire emissions and disparities in boreal Siberia (1998–2002), J. Geophys. Res., 2004, vol. 109. doi 10/1029/2004JD004570.Google Scholar
  43. 43.
    Stocks, B.J., Mason, J.A., Todd, J.B., Bosh, E.M., Watton, B.M., Amiro, B.D., et al., Large forest fire in Canada, 1959–1997, J. Geophys. Res., 2002, vol. 108. doi 10.1029/2001JD000484.Google Scholar
  44. 44.
    Sukhinin, A.I., French, N.H.F., Kasischke, E.S., Hewson, J.H., Soja, A.J., Csiszar, I.A., Hyer, E.J., Loboda, T., Conrad, S.G., Romasko, V.I., Pavlichenko, E.A., Miskiv, S.I., and Slinkina, O.A., AVHRR-based mapping of fires in Russia: new products for fire management and carbon cycle studies, Remote Sens. Environ., 2004, vol. 93, pp. 546–564.CrossRefGoogle Scholar
  45. 45.
    Tchebakova, N.M., Parfenova, E.I., and Soja, A.J., Effects of climate, permafrost, and fire on vegetation change in Siberia in a changing climate, Environ. Res. Lett., 2009, vol. 4. doi 10.1088/1748-9326/4/4/045013.Google Scholar
  46. 46.
    Van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., Morton, D.C., De Fries, R.S., Jin, Y., and van Leeuwen, T.T., Global fire emissions and the contribution of deforestation, savanna, forest, agricultural and peat fires (1997–2009), Atmos. Chem. Phys., 2010, vol. 10, pp. 11707–11735.CrossRefGoogle Scholar
  47. 47.
    Yefremov, D.F. and Shvidenko, A.Z., Long-term environmental impact of catastrophic forest fires in Russia’s Far East and their contribution to global processes, Int. For. Fire News, 2004, vol. 32, pp. 43–49.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.International Institute for Applied Systems AnalysisLaxenburgAustria
  2. 2.Sukachev Institute of Forest, Siberian DivisionRussian Academy of SciencesKrasnoyarskRussia
  3. 3.Moscow State Forest UniversityMytishchi, Moscow oblastRussia

Personalised recommendations