Contemporary Problems of Ecology

, Volume 6, Issue 6, pp 662–666 | Cite as

Impact of heavy metals on the trophic activity of daphnia depending on feeding conditions and age of crustaceans



This paper studies how exposure conditions affect the trophic activity of Daphnia crustaceans and their sensitivity to heavy metals. To register the trophic activity of crustaceans, the change in intensity of the zero level of rapid fluorescence in chlorella alga utilized as feed is used. The optimal conditions (stocking density, age of test organisms, feeding schedule, and exposure time) are determined under which a high level of the trophic activity and sensitivity of crustaceans to pollution are registered. An experimental design is suggested in which crustaceans are first exposed to a toxicant and then a suspension of the alga is introduced into a cultivation medium.


biotesting heavy metals Daphina magna Straus trophic activity Chlorella vulgaris Beijer chlorophyll fluorescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arsan, O.M., Conditions and prospects of development of water ecotoxicology, Gidrobiol. Zh., 2007, vol. 43, no. 6, pp. 50–64.Google Scholar
  2. Barata, C., Alanon, P., Gutierrez-Alonso, S., Riva, M.C., Fernandez, C., and Tarazona, J.V., A Daphnia magna feeding bioassay as a cost effective and ecological relevant sublethal toxicity test for environmental risk assessment of toxic effluents, Sci. Total Environ., 2008, vol. 405, nos. 1–3, pp. 78–86.PubMedCrossRefGoogle Scholar
  3. Bitton, G., Rhodes, K., and Koopman, B., Ceriofast™: an acute toxicity test based on Ceriodaphnia dubia feeding behavior, Environ. Toxicol. Chem., 1996, vol. 15, no. 2, pp. 123–125.Google Scholar
  4. Braginskii, L.P., Method of toxicological biotesting using Daphnia magna and other Copepoda (critical review), Gidrobiol. Zh., 2000, vol. 36, no. 5, pp. 50–70.Google Scholar
  5. Filenko, O.F., Biological methods applied for environmental monitoring, Ekol. Sist. Pribory, 2007, no. 6, pp. 18–20.Google Scholar
  6. Gilyarov, A.M., Zoologiya pozvonochnykh. Biologiya vetvistousykh rakoobraznykh (Zoology of Invertebrates: Biology of Water Fleas), Moscow: Mir, 1980, vol. 3.Google Scholar
  7. Gol’d, V.M., Gaevskii, N.A., Grigor’ev, Yu.S., Popel’nitskii, V.A., and Gekhman, A.V., Teoreticheskie osnovy i metody izucheniya flourestsentsii khlorofilla (Theoretical Principles and Study Methods of Chlorophyll Fluorescence), Krasnoyarsk: Krasnoyarsk Gos. Univ., 1984.Google Scholar
  8. Grigor’ev, Yu.S. and Shahkova, T.L., Metodika opredeleniya toksichnosti vodnykh vytyazhek iz pochv, osadkov stochnykh vod i otkhodov, pit’evoi, stochnoi, prirodnoi vody po smertnosti test-ob”ekta Daphnia magna Straus (A Method for Determination of Toxicity of Aquatic Extracts of Soils, Waste Sediments, Drinking, Waste and Natural Water Using Death Rate of Daphnia magna), Moscow, 2006.Google Scholar
  9. Gutel’makher, B.L. and Alimov, A.F., Quantitative principles of filtration nutrition of aquatic animals, Obshchie osnovy izucheniya vodnykh ekosistem (General Principles of Investigation of Aquatic Ecosystems), Vinberg, G.G., Ed., Leningrad: Nauka, 1979, pp. 171–193.Google Scholar
  10. Hanazato, T., Growth analysis of Daphnia early juvenile stages as an alternative method to test the chronic effect of chemicals, Chemosphere, 1998, vol. 36, no. 8, pp. 1903–1909.CrossRefGoogle Scholar
  11. Luzgin, V.K., Variability of sensitivity of Daphnia populations at different stages of development to different toxicants, in Fiziologiya i toksikologiya gidrobiontov (Physiology and Toxicology of Hydrobionts), Yaroslavl: Yarosl. Gos. Univ., 1990, pp. 64–68.Google Scholar
  12. Matorin, D.N., Vavilin, D.V., and Venediktov, P.S., Possibility of implementation of fluorescent methods for study of nutrition of Crustacean, Biol. Nauki, 1990, no. 1, pp. 146–152.Google Scholar
  13. McWilliam, R.A. and Barid, D.J., Post-exposure feeding depression: a new toxicity endpoint for use in laboratory studies with Daphnia magna, Environ. Toxicol. Chem., 2002, vol. 21, no. 6, pp. 1198–1205.PubMedGoogle Scholar
  14. Orchard, S.J., Holdway, D.A., Barata, C., and van Dam, R.A., A Rapid response toxicity test based on the feeding rate of the tropical Cladoceran Moinodaphnia macleyi, Ecotoxicol. Environ. Safety, 2002, vol. 53, pp. 12–19.PubMedCrossRefGoogle Scholar
  15. Shashkova, T.L., Grigor’ev, Yu.S., and Berezina, O.A., Influence of environmental conditions on sensitivity of Daphnia magna to toxicants, Vestn. Krasnoyarsk. Gos. Univ., Ser.: Estestv. Nauki, 2006, nos. 5/1, pp. 81–85.Google Scholar
  16. Stuhlbacher, A., Bradley, M. C., Naylor, C., and Calow, P., Variation in the development of cadmium resistance in Daphnia magna Straus; effect of temperature, nutrition, age and genotype, Environ. Pollut., 1993, vol. 80, pp. 153–158.PubMedCrossRefGoogle Scholar
  17. Tsvylev, O.P., Pereladov, M.V., and Patin, S.A., USSR Inventor’s Certificate no. 1029079, 1983.Google Scholar
  18. Vosyliene, M.Z., Review of the methods for acute and chronic toxicity assessment of single substances, effluents and industrial waters, Acta Zool. Lituanica, 2007, vol. 17, no. 1, pp. 3–15.CrossRefGoogle Scholar
  19. Yi, X., Kang, S.-W., and Jung, J., Long-term evaluation of lethal and sublethal toxicity of industrial effluents using Daphnia magna and Moina macrocopa, J. Hazard. Mater., 2010, vol. 178, pp. 982–987.PubMedCrossRefGoogle Scholar
  20. Yu, R.-Q. and Wang, W.-X., Kinetic uptake of bioavailable cadmium, selenium, and zinc by Daphnia magna, Environ. Toxicol. Chem., 2002, vol. 21, no. 11, pp. 2348–2355.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations