Contemporary Problems of Ecology

, Volume 5, Issue 4, pp 376–385 | Cite as

Influence of anthropogenic pollution on content of essential polyunsaturated fatty acids in links of food chain of river ecosystem

  • M. I. Gladyshev
  • O. V. Anishchenko
  • N. N. Sushchnik
  • G. S. Kalacheva
  • I. V. Gribovskaya
  • A. V. Ageev


In the course of monthly sampling in 2008–2010, two regions of the littoral of the Yenisei river were compared. One of these regions (conventionally pure) was situated upstream of Krasnoyarsk, while the other (conventionally polluted) was downstream of Krasnoyarsk. The concentrations of heavy metals, oil products, phenols, biogenic elements and essential polyunsaturated fatty acids (PUFAs) in various components of the river ecosystem were determined. It was discovered that the anthropogenic pollution causes a decrease in the resources of essential PUFA in the biomass of the upper links of the food chain of the river ecosystem.


polyunsaturated fatty acids heavy metals gammarus grayling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arts, M.T., Ackman, R.G., and Holub, B.J., Essential Fatty Acids in Aquatic Ecosystems: a Crucial Link between Diet and Human Health and Evolution, Can. J. Fish. Aquat. Sci., 2001, vol. 58, pp. 122–137.CrossRefGoogle Scholar
  2. 2.
    Gladyshev, M.I., Arts, M.T., and Sushchik, N.N., Preliminary Estimates of the Export of Omega-3 Highly Unsaturated Fatty Acids (EPA + DHA) from Aquatic to Terrestrial Ecosystems, in Lipids in aquatic ecosystems, New York: Springer, 2009, pp. 179–209.CrossRefGoogle Scholar
  3. 3.
    Lauritzen, L., Hansen, H.S., Jorgensen, M.H., and Michaelsen, K.F., The Essentiality of Long Chain n3 Fatty Acids in Relation to Development and Function of the Brain and Retina, Progr. Lipid Res., 2001, vol. 40, pp. 1–94.CrossRefGoogle Scholar
  4. 4.
    Broadhurst, C.L., Wang, Y., Crawford, M.A., Cunnane, S.C., Parkington, J.E., and Schmidt, W.F., Brain-specific Lipids from Marine, Lacustrine, or Terrestrial Food Resources: Potential Impact on Early African Homo Sapiens, Comp. Biochem. Physiol., 2002, vol. 131, pp. 653–673.CrossRefGoogle Scholar
  5. 5.
    Jump, D.B., The biochemistry of n-3 Polyunsaturated Fatty Acids, J. Biol. Chem., 2002, vol. 227, pp. 8755–8758.CrossRefGoogle Scholar
  6. 6.
    Garg, M.I., Wood, L.G., Singh, H., and Moughan, P.J., Means of Delivering Recommended Levels of Long Chain n-3 Polyunsaturated Fatty Acids in Human Diets, J. Food Sci., 2006, vol. 71, no. 5, pp. 66–71.CrossRefGoogle Scholar
  7. 7.
    Harper, C.R. and Jacobson, T.A., The Fats of Life — The Role of Omega-3 Fatty Acids in the Prevention of Coronary Heart Disease, Arch. Intern. Med., 2001, vol. 161, pp. 2185–2192.PubMedCrossRefGoogle Scholar
  8. 8.
    Calder, P.C., Long-chain n-3 Fatty Acids and Cardiovascular Disease: Further Evidence and Insights, Nutr. Res., 2004, vol. 24, pp. 761–772.CrossRefGoogle Scholar
  9. 9.
    Silvers, K.M. and Scott, K.M., Fish Consumption and Self-reported Physical and Mental Health Status, Public Health Nutr., 2002, vol. 5, pp. 427–431.PubMedCrossRefGoogle Scholar
  10. 10.
    McNamara, R.K., The Emerging Role of Omega-3 Fatty Acids in Psychiatry, Prostaglandins, Leukotrienes Essent. Fatty Acids, 2006, vol. 75, pp. 223–225.CrossRefGoogle Scholar
  11. 11.
    Ahlgren, G., Gustafsson, I.B., and Boberg, M., Fatty Acid Content and Chemical Composition of Freshwater Microalgae, J. Phycol., 1992, vol. 28, pp. 37–50.CrossRefGoogle Scholar
  12. 12.
    Nikanorov, A.M. and Zhulidov A.V., Biomonitoring metallov v presnovodnykh ekosistemakh (A Biomonitoring of Metals in Freshwater Ecosystems), Leningrad: Gidrometeoizdat, 1991.Google Scholar
  13. 13.
    Gladyshev, M.I. and Moskvicheva A.V., Baikal Invaders Have Become Dominant in the Upper Yenisei Benthofauna, Dokl. Akad. Nauk, 2002, vol. 383, no. 4, pp. 568–570.Google Scholar
  14. 14.
    Sushchik, N.N., Gladyshev, M.I., Moskvichova, A.V., Makhutova, O.N., and Kalachova, G.S., Comparison of Fatty Acid Composition in Major Lipid Classes of the Dominant Benthic Invertebrates of the Yenisei River, Comp. Biochem. Physiol. B., 2003, vol. 134, pp. 111–122.PubMedCrossRefGoogle Scholar
  15. 15.
    Sushchik, N.N., Gladyshev, M.I., Kalachova, G.S., Makhutova, O.N., and Ageev, A.V., Comparison of Seasonal Dynamics of the Essential PUFA Contents in Benthic Invertebrates and Grayling Thymallus Arcticus in the Yenisei River, Comp. Biochem. Physiol. B., 2006, vol. 145, pp. 278–287.PubMedCrossRefGoogle Scholar
  16. 16.
    Sushchik, N.N., Gladyshev, M.I., and Kalachova, G.S., Seasonal Dynamics of Fatty Acid Content of a Common Food Fish from the Yenisei River, Siberian Grayling, Thymallus Arcticus, Food Chem., 2007, vol. 104, pp. 1353–1358.CrossRefGoogle Scholar
  17. 17.
    Sushchik, N.N., Gladyshev, M.I., Kravchuk, E.S., Ivanova, E.A., Ageev, A.V., and Kalachova, G.S. Seasonal Dynamics of Long-chain Polyunsaturated Fatty Acids in Littoral Benthos in the Upper Yenisei River, Aquat. Ecol., 2007, vol. 41, pp. 349–365.CrossRefGoogle Scholar
  18. 18.
    Kolmakov, V.I., Anishchenko, O.V., Ivanova, E.A., Gladyshev, M.I., and Sushchik, N.N., Estimation of Periphytic Microalgae Gross Primary Production with DCMU-fluorescence Method in Yenisei River (Siberia, Russia), J. Appl. Phycol., 2008, vol. 20, pp. 289–297.CrossRefGoogle Scholar
  19. 19.
    Anishchenko, O.V., Gladyshev, M.I., Kravchuk, E.S., Sushchik, N.N., Gribovskaya, I.V., Distribution and migration of metals in trophic chains of the Yenisei ecosystem near Krasnoyarsk city, Vodn. resur., 2009, vol. 36, no. 5, pp. 623–632.Google Scholar
  20. 20.
    Gladyshev, M.I., Sushchik, N.N., Anishchenko, O.V., Makhutova, O.N., Kalachova, G.S., and Gribovskaya, I.V., Benefit-risk Ratio of Food Fish Intake as the Source of Essential Fatty Acids vs. Heavy Metals: A Case Study of Siberian Grayling from the Yenisei River, Food Chem., 2009, vol. 115, pp. 545–550.CrossRefGoogle Scholar
  21. 21.
    Anishchenko, O.V., Gladyshev, M.I., Kravchuk, E.S., Ivanova, E.A., Gribovskaya, I.V., and Sushchik, N.N. Seasonal Variations of Metal Concentrations in Periphyton and Taxonomic Composition of the Algal Community at a Yenisei River Littoral Site, Cent. Eur. J. Biol., 2010, vol. 5, pp. 125–134.CrossRefGoogle Scholar
  22. 22.
    Sushchik, N.N., Gladyshev, M.I., Ivanova, E.A., and Kravchuk, E.S., Seasonal Distribution and Fatty Acid Composition of Littoral Microalgae in the Yenisei River, J. Appl. Phycol., 2010, vol. 22. pp. 11–24.CrossRefGoogle Scholar
  23. 23.
    Anishchenko, O.V., Gladyshev, M.I., Kravchuk, E.S., Kalachova, G.S., and Gribovskaya, I.V., Assessment of the Yenisei River Antropogenic Pollution by Metals Concentrations in the Main Ecosystem Compartments Upstream and Downstream Krasnoyarsk City (Russia), J. Sib. Fed. Univ., Biol., 2010, vol. 3, no. 1, pp. 82–98.Google Scholar
  24. 24.
    Gladyshev, M.I., Gribovskaya, I.V., Moskvicheva, A.V., Muchkina, E.Y., Chuprov, S.M., and Ivanova, E.A., Content of Metals in Compartments of Ecosystem of a Siberian Pond, Arch. Environ. Contam. Toxicol., 2001, vol. 41, no. 2, pp. 157–162.PubMedCrossRefGoogle Scholar
  25. 25.
    Gladyshev, M.I., Emelianova, A.Y., Kalachova, G.S., Zotina, T.A., Gaevsky, N.A., and Zhilenkov, M.D., Gut Content Analysis of Gammarus Lacustris From a Siberian Lake Using Biochemical and Biophysical Methods, Hydrobiologia, 2000, vol. 431, no. 2/3, pp. 155–163.CrossRefGoogle Scholar
  26. 26.
    Makhutova, O.N., Kalachova, G.S., and Gladyshev, M.I., A Comparison of the Fatty Acid Composition of Gammarus Lacustris and Its Food Sources from a Freshwater Reservoir, Bugach, and the Saline Lake Shira in Siberia, Russia, Aquat. Ecol., 2003, vol. 37, pp. 159–167.CrossRefGoogle Scholar
  27. 27.
    Gladyshev, M.I., Sushchik, N.N., Makhutova, O.N., Dubovskaya, O.P., Kravchuk, E.S., Kalachova, G.S., and Khromechek, E.B., Correlations Between Fatty Acid Composition of Seston and Zooplankton and Effects of Environmental Parameters in a Eutrophic Siberian Reservoir, Limnologica, 2010, vol. 40, pp. 343–357.CrossRefGoogle Scholar
  28. 28.
    Bervoets, L. and Blust, R., Metal Concentrations in Water, Sediment and Gudgeon (Gobio gobio) from a Pollution Gradient: Relationship with Fish Condition Factor, Environ. Pollut., 2003, vol. 126, pp. 9–19.PubMedCrossRefGoogle Scholar
  29. 29.
    Bogatov, V.V. and Bogatova, L.V., Heavy Metal Accumulation by Freshwater Hydrobionts in a Mining Area in the South of the Russian Far East, Ekologija, 2009, no. 3, pp. 202–208.Google Scholar
  30. 30.
    Besser, J.M., Brumbaugh, W.G., May, T.W. et al., Bioavailability of Metals in Stream Food Webs and Hazards to Brook Trout (Solvelinus Fontinalis) in the Upper Animas River Watershed, Colorado, Arch. Environ. Contam. Toxicol., 2001, vol. 40, no. 1. pp. 48–59.PubMedCrossRefGoogle Scholar
  31. 31.
    Smolders, A.J.P., Lock, R.A.C., Van der Velde, G., Medin a Hoyos, R.I., and Roelofs, J.G.M. Effects of Mining Activities on Heavy Metal Concentrations in Water, Sediment, and Macroinvertebrates in Different Reaches of the Pilcomayo River, South America, Arch. Environ. Contam. Toxicol., 2003, vol. 44, pp. 314–323.PubMedCrossRefGoogle Scholar
  32. 32.
    Camusso, M., Galassi, S., and Vignati, D., Assessment of River Po Sediment Quality by Micropollutant Analysis, Water Res., 2002, vol. 36, pp. 2491–2504.PubMedCrossRefGoogle Scholar
  33. 33.
    Duran, M., Kara, Y., Akyildiz, G.K., and Ozdemir, A., Antimony and Heavy Metals Accumulation in Some Macroinvertebrates in the Yesilirmak River (N Turkey) Near the Sb-mining Area, Bull. Environ. Contam. Toxicol., 2007, vol. 78, pp. 395–399.PubMedCrossRefGoogle Scholar
  34. 34.
    Jain, C.K., Metal Fractionation Study on Bed Sediments of River Yamuna, India, Water Res., 2004, vol. 38, pp. 569–578.PubMedCrossRefGoogle Scholar
  35. 35.
    MacDonald, D.D., Ingersoll, C.G., and Berger, T.A., Development and Evaluation of Consensus-based Sediment Quality Guidelines for Freshwater Ecosystems, Arch. Environ. Contam. Toxicol., 2000, vol. 39, pp. 20–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Behra, R., Landwehrjohann, R., Vogel, K., Wagne, B., Sigg, L. et al., Copper and Zinc Content of Periphyton from Two Rivers as a Function of Dissolved Metal Concentration, Aquat. Sci., 2002, vol. 64, no 3, pp. 300–306.CrossRefGoogle Scholar
  37. 37.
    Blank, H., Admiraal, W., Cleven, R.F.M.J., Guasch, H., van den Hoop, M.A.G.T., Ivorra, N. et al., Variability in Zinc Tolerance, Measured as Incorporation of Radiolabeled Carbon Dioxide and Thymidine, in Periphyton Communities Sampled from 15 European River Stretches, Arch. Environ. Contam. Toxicol., 2003, vol. 44, pp. 17–29.CrossRefGoogle Scholar
  38. 38.
    Farag, A.M., Woodward, D.F., Goldstein, J.N. et al., Concentrations of Metals Associated with Mining Waste in Sediments, Biofilm, Benthic Macroinvertebrates, and Fish from the Coeurd Alen River Basin, Idaho, Arch. Environ. Contam. Toxicol., 1998, vol. 34, no. 2, pp. 119–127.PubMedCrossRefGoogle Scholar
  39. 39.
    Ikem, A. and Egilla, J., Trace Element Content of Fish Feed and Bluegill Sunfish (Lepomis Macrochirus) from Aquaculture and Wild Source in Missouri, Food Chem., 2008, vol. 110, pp. 301–309.CrossRefGoogle Scholar
  40. 40.
    Burger, J. and Gochfeld, M., Heavy Metals in Commercial Fish in New Jersey, Environ. Res., 2005, vol. 99. pp. 403–412.PubMedCrossRefGoogle Scholar
  41. 41.
    Cheung, K.C., Leung, H.M., and Wong, M.H., Metal Concentrations of Common Freshwater and Marine Fish from the Pearl River Delta, South China, Arch. Environ. Contam. Toxicol., 2008, vol. 54, pp. 705–715.PubMedCrossRefGoogle Scholar
  42. 42.
    Gutleb, A.C., Helsberg, A., and Mitchell, C., Heavy Metal Concentrations in Fish from a Pristine Rainforest Valley in Peru: a Baseline Study Before the Start of Oil-drilling Activities, Bull. Environ. Contam. Toxicol., 2002, vol. 69, pp. 523–529.PubMedCrossRefGoogle Scholar
  43. 43.
    Gladyshev, M.I., Sushchik, N.N., Anishchenko, O.V., Makhutova, O.N., Kalachova, G.S., and Gribovskaya, I.V., Benefit-risk Ratio of Food Fish Intake as the Source of Essential Fatty Acids vs. Heavy Metals: A Case Study of Siberian Grayling from the Yenisei River, Food Chem., 2009, vol. 115. 5, pp. 545–550.CrossRefGoogle Scholar
  44. 44.
    Torres-Ruiz, M., Wehr, J.D., and Perrone, A.A., Trophic Relations in a Stream Food Web: Importance of Fatty Acids for Macroinvertebrate Consumers, J. N. Am. Benthol. Soc., 2007, vol. 26, pp. 509–522.CrossRefGoogle Scholar
  45. 45.
    Descroix, A., Bec, A., Bourdier, G., Sargos, D., Sauvanet, J., Misson, B., and Desvilettes, C., Fatty Acids as Biomarkers to Indicate Main Carbon Sources of Four Major Invertebrate Families in a Large River (the Allier, France), Fundam. Appl. Limnol., 2010, vol. 177, pp. 39–55.CrossRefGoogle Scholar
  46. 46.
    Kolanowski, W., Stolyhwo, A., and Grabowski, M., Fatty Acid Composition of Selected Fresh Water Gammarids (Amphipoda, Crustacea): a Potentially Innovative Source of Omega-3 LC PUFA, J. Am. Oil. Chem. Soc., 2007, vol. 84, pp. 827–833.CrossRefGoogle Scholar
  47. 47.
    Sargent, J., Bell, G., McEvoy, L., Tocher, D., and Estevez, A., Recent Developments in the Essential Fatty Acid Nutrition of Fish, Aquaculture, 1999, vol. 177, pp. 191–199.CrossRefGoogle Scholar
  48. 48.
    Francis, D.S., Turchini, G.M., Jones, P.L., and De Silva, S.S., Effects of Dietary Oil Source on Growth and Fillet fFatty Acid Composition of Murray Cod, Maccullochella Peelii Peelii, Aquaculture, 2006, vol. 253, pp. 547–556.CrossRefGoogle Scholar
  49. 49.
    Benitez-Santana, T., Masuda, R., Juarez Carrillo, E., Ganuza, E., Valencia, A., Hernandez-Cruz, C.M., and Izquierdo, M.S., Dietary n-3 HUFA Deficiency Induces a Reduced Visual Response in Gilthead Seabream Sparus Aurata Larvae, Aquaculture, 2007, vol. 264, pp. 408–417.CrossRefGoogle Scholar
  50. 50.
    Rinchard, J., Czesny, S., and Dabrowski, K., Influence of Lipid Class and Fatty Acid Deficiency on Survival, Growth, and Fatty Acid Composition in Rainbow Trout Juveniles, Aquaculture, 2007, vol. 264, pp. 363–371.CrossRefGoogle Scholar
  51. 51.
    Kjørsvik, E., Olsen, C., Wold, P.-A., HoehneReitan, K., Cahu, C.L., Rainuzzo, J., Olsen, A.I., Øie, G., and Olsen, Y., Comparison of Dietary Phospholipids and Neutral Lipids on Skeletal Development and Fatty Acid Composition in Atlantic Cod (Gadus Morhua), Aquaculture, 2009, vol. 294, pp. 246–255.CrossRefGoogle Scholar
  52. 52.
    Vizcaino-Ochoa, V., Lazo, J.P., Baron-Sevilla, B., and Drawbridge, M.A., The Effect of Dietary Docosahexaenoic Acid (DHA) on Growth, Survival and Pigmentation of California Halibut Paralichthys Californicus Larvae (Ayres, 1810), Aquaculture, 2010, vol. 302, pp. 228–234.CrossRefGoogle Scholar
  53. 53.
    Ahlgren, G., Blomqvist, P., Boberg, M., and Gustafsson, I.-B., Fatty Acid Content of the Dorsal Muscle — an Indicator of Fat Quality in Freshwater Fish, J. Fish Biol., 1994, vol. 45, pp. 131–157.Google Scholar
  54. 54.
    Ahlgren, G., Carlstein, M., and Gustafsson, I.-B., Effects of Natural and Commercial Diets on the Fatty Acid Content of European Grayling, J. Fish Biol., 1999, vol. 55, pp. 1142–1155.CrossRefGoogle Scholar
  55. 55.
    Kainz, M., Arts, M.T., and Mazumder, A., Essential Fatty Acids in the Planktonic Food Web and Their Ecological Role for Higher Trophic Levels, Limnol. Oceanogr., 2004, vol. 49, pp. 1784–1793.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. I. Gladyshev
    • 1
    • 2
  • O. V. Anishchenko
    • 1
    • 2
  • N. N. Sushchnik
    • 1
    • 2
  • G. S. Kalacheva
    • 1
  • I. V. Gribovskaya
    • 1
  • A. V. Ageev
    • 2
  1. 1.Institute of Biophysics, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations