Skip to main content
Log in

Analytical Approach to Solving Fractional Partial Differential Equation by Optimal q-Homotopy Analysis Method

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

The optimal q-homotopy analysis method is employed in order to solve partial differential equations (PDEs) featuring a time-fractional derivative. To illustrate the simplicity and ability of the suggested approach, some specific and clear examples are given. All numerical calculations in this manuscript have been carried out withMathematica package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liao, S.J., The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems, PhD Thesis, Shanghai: Shanghai Jiao Tong University, 1992.

    Google Scholar 

  2. El-Tawil, M.A. and Huseen, S.N., The q-Homotopy Analysis Method (q-HAM), Int. J. Appl.Math. Mech., 2012, vol. 8, no. 15, pp. 51–75.

    Google Scholar 

  3. Huseen, S.N., Grace, S.R., and El-Tawil, M.A., The Optimal q-Homotopy Analysis Method (Oq-HAM), Int. J. Comp. Technol., 2012, vol. 11, no. 8, pp. 2859–2866.

    Article  Google Scholar 

  4. Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Netherlands: Elsevier BV, 2006.

    MATH  Google Scholar 

  5. Miller, K.S. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: Wiley, 1993.

    MATH  Google Scholar 

  6. Momani, S. and Shawagfeh, N., Decomposition Method for Solving Fractional Riccati Differential Equations, Appl.Math. Comput., 2006, vol. 182, pp. 1083–1092.

    MathSciNet  MATH  Google Scholar 

  7. Wang, Q, Numerical Solutions for Fractional KdV–Burgers Equation by Adomian DecompositionMethod, Appl.Math. Comp., 2006, vol. 182, pp. 1048–1055.

    Article  MATH  Google Scholar 

  8. Inc, M., The Approximate and Exact Solutions of the Space-and Time-Fractional Burgers Equations with Initial Conditions by Variational Iteration Method, J. Math. An. Appl., 2008, vol. 345, pp. 476–484.

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, X.J., Baleanu, D., Khan, Y., and Mohyud-Din, S.T., Local Fractional Variational Iteration Method for Diffusion andWave Equations on Cantor Sets, Rom. J. Phys., 2014, vol. 59, pp. 36–48.

    Google Scholar 

  10. Momani, S. and Odibat, Z., Homotopy Perturbation Method for Nonlinear Partial Differential Equations of Fractional Order, Phys. Lett. A, 2007, vol. 365, pp. 345–350.

    Article  MathSciNet  MATH  Google Scholar 

  11. Odibat, Z. and Momani, S., Modified Homotopy Perturbation Method: Application to Quadratic Riccati Differential Equation of Fractional Order, Chaos Sol. Fract., 2008, vol. 36, pp. 167–174.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hosseinnia, S., Ranjbar, A., and Momani, S., Using an Enhanced Homotopy Perturbation Method in Fractional Differential Equations via Deforming the Linear Part, Comput. Math. Appl., 2008, vol. 56, pp. 3138–3149.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hashim, I., Abdulaziz, O., and Momani, S., Homotopy Analysis Method for Fractional IVPs, Comm. Nonlin. Sci., 2009, vol. 14, pp. 674–684.

    Article  MathSciNet  MATH  Google Scholar 

  14. Zurigat, M., Momani, S., and Alawneh, A., Analytical Approximate Solutions of Systems of Fractional Algebraic-Differential Equations by Homotopy Analysis Method, Comp. Math. Appl., 2010, vol. 59, pp. 1227–1235.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kumar, P. and Agrawal, O.P., An Approximate Method for Numerical Solution of Fractional Differential Equations, Sign. Proc., 2006, vol. 86, pp. 2602–2610.

    Article  MATH  Google Scholar 

  16. Yang, X.J., Baleanu, D., and Zhong, W.P., Approximation Solutions for DiffusionEquation onCantorSpace-Time, Proc. Rom. Acad., Ser. A, 2013, vol. 14, pp. 127–133.

    Google Scholar 

  17. Yuste, S.B., Weighted Average FiniteDifference Methods for Fractional DiffusionEquations, J. Comp. Phys., 2006, vol. 216, pp. 264–274.

    Article  MATH  Google Scholar 

  18. Yabushita, K., Yamashita, M., and Tsuboi, K., An Analytic Solution of Projectile Motion with the Quadratic Resistance Law Using the Homotopy Analysis Method, J. Phys. A: Math. Theor., 2007, vol. 40, no. 29, pp. 8403–8416.

    Article  MathSciNet  MATH  Google Scholar 

  19. El-Tawil, M.A. and Huseen, S.N., On Convergence of the q-Homotopy Analysis Method, Int. J. Cont.Math. Sci., 2013, vol. 8, no. 10, pp. 481–497.

    MathSciNet  Google Scholar 

  20. Neamaty, A., Agheli, B., and Darzi, R., Variational Iteration Method and He’s Polynomials for Time-Fractional Partial Differential Equations, Progr. Fract. Diff. Appl., 2015, vol. 1, no. 1, pp. 47–55.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Darzi.

Additional information

Original Russian Text © R. Darzi, B. Agheli, 2018, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2018, Vol. 21, No. 2, pp. 171–183.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darzi, R., Agheli, B. Analytical Approach to Solving Fractional Partial Differential Equation by Optimal q-Homotopy Analysis Method. Numer. Analys. Appl. 11, 134–145 (2018). https://doi.org/10.1134/S1995423918020040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423918020040

Keywords

Navigation