Numerical Analysis and Applications

, Volume 8, Issue 3, pp 248–259 | Cite as

Stiffly stable second derivative linear multistep methods with two hybrid points

Article
  • 52 Downloads

Abstract

This paper presents a family of hybrid linear multistep methods (LMMs) with second derivative term for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The methods are stiffly stable for step number k ≤ 7.

Keywords

continuous linear multistep methods stiff problem stiff stability boundary locus hybrid LMM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Butcher, J.C., Modified Multistep Method for the Numerical Integration of Ordinary Differential Equations, J. Assoc. Comput. Mach., 1965, vol. 12, pp.124–135.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Butcher, J.C., The Numerical Analysis of Ordinary Differential Equation: Runge Kutta and General Linear Methods, Chichester: Wiley, 1987.MATHGoogle Scholar
  3. 3.
    Butcher, J.C., Some New Hybrid Methods for IVPs, in Computational Ordinary Differential Equations, Cash, J.R. and GladWell, I., Eds., Oxford: Clarendon Press, 1992, pp.29–46.Google Scholar
  4. 4.
    Butcher, J.C. and O’Sullivan, A.E., Nordsieck Methods with an Off-Step Point, Num. Algor., 2002, vol. 31, pp.87–101.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gragg, W.B. and Stetter, H.J., Generalized Multistep Predictor-Corrector Methods, J. Assoc. Comput. Mach., 1964, vol. 11, pp.188–209.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dahlquist, G., On Stability and Error Analysis for Stiff Nonlinear Problems, part 1, Stockholm: Dept. of Information Processing, Computer Science, Royal Inst. of Technology, 1975, Rep. TRITA-NA-7508.Google Scholar
  7. 7.
    Enright, W.H., Second Derivative Multistep Methods for Stiff ODEs, SIAM. J. Num. Anal., 1974, vol. 11,iss. 2, pp.321–331.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Enright, W.H., Hull, T.E, and Lindberg, B., Comparing Numerical Methods for Stiff Systems of ODEs, BIT Num. Math., 1975, vol. 15, no. 1, pp.10–48.CrossRefMATHGoogle Scholar
  9. 9.
    Fatunla, S.O., Numerical Methods for Initial Value Problems in ODEs, New York: Academic Press, 1978.Google Scholar
  10. 10.
    Gear, C.W., The Automatic Integration of Stiff ODEs, Information Processing 68: Proc. IFIP Congress, Edinburgh, 1968, Morrell, A.J.H., Ed., Amsterdam: North-Holland, 1969, pp.187–193.Google Scholar
  11. 11.
    Gear, C.W., Algorithm 407: DIFSUB for Solution of ODEs, Comm. ACM, 1971, vol. 14,iss. 3, pp.185–190.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gear, C.W., Numerical Initial Value Problems in ODEs, Englewood Cliffs, N.J., USA: Prentice-Hall, 1971.Google Scholar
  13. 13.
    Higham, D.J. and Higham, N.J., Matlab Guide, Philadelphia: SIAM, 2000.MATHGoogle Scholar
  14. 14.
    Ikhile, M.N.O. and Okuonghae, R.I., Stiffly Stable Continuous Extension of Second Derivative LMM with an Off-Step Point for IVPs in ODEs, J. Nig. Assoc. Math. Phys., 2007, vol. 11, pp.175–190.Google Scholar
  15. 15.
    Kohfeld, J.J. and Thompson, G.T., Multistep Methods with Modified Predictors and Correctors, J. Assoc. Comput. Mach., 1967, vol. 14, pp.155–166.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lambert, J.D., Numerical Methods for Ordinary Differential Systems. The Initial Value Problems, Chichester: Wiley, 1991.Google Scholar
  17. 17.
    Lambert, J.D., Computational Methods for Ordinary Differential Systems. The Initial Value Problems, Chichester: Wiley, 1973.Google Scholar
  18. 18.
    Nevanlinna, O., On the Numerical Integration of Nonlinear IVPs by Linear Multistep Methods, BIT Num. Math., 1977, vol. 17, pp.58–71.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Owren, B. and Zennaro, M., Order Barriers for Continuous Explicit Runge-Kutta Methods, Math. Comput., 1991, vol. 56, pp.645–661.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Okuonghae, R.I., Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs, PhD Thesis, Nigeria, Benin City: Dept. of Math. University of Benin, 2008.Google Scholar
  21. 21.
    Okuonghae, R.I., Ogunleye, S.O., and Ikhile, M.N.O., Some Explicit General Linear Methods for IVPs in ODEs, J. Algor. Comp. Technol., 2013, vol. 7, no. 1, pp.41–63.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Okuonghae, R.I., Variable Order Explicit Second Derivative General Linear Methods, Comp. Appl. Math., 2014, vol. 33, pp.243–255.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Okuonghae, R.I. and Ikhile, M.N.O., On the Construction of High Order A(α)-Stable Hybrid Linear Multistep Methods for Stiff IVPs and ODEs, Num. An. Appl., 2012, vol. 5, no. 3, pp.231–241.CrossRefGoogle Scholar
  24. 24.
    Okuonghae, R.I. and Ikhile, M.N.O., Second Derivative General Linear Methods, Num. Algor., 2014, vol. 67,iss. 3, pp.637–654.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Okuonghae, R.I. and Ikhile, M.N.O., A Class of Hybrid Linear Multistep Methods with A(α)-Stability Properties for Stiff IVPs in ODEs, J. Num. Math., 2013, vol. 21, no. 2, pp.157–172.MathSciNetMATHGoogle Scholar
  26. 26.
    Okuonghae, R.I. and Ikhile, M.N.O., A-Stable High Order Hybrid Linear Multistep Methods for Stiff Problems, J. Algor. Comp. Technol., 2014, vol. 8, no. 4, pp.441–469.CrossRefGoogle Scholar
  27. 27.
    Widlund, O., A Note on Unconditionally Stable Linear Multistep Methods, BIT Num. Math., 1967, vol. 7, pp.65–70.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BeninBenin CityNigeria

Personalised recommendations