Advertisement

Numerical Analysis and Applications

, Volume 7, Issue 2, pp 136–146 | Cite as

Numerical-analytical simulation of wave fields for complex subsurface geometries and structures

  • B. G. Mikhailenko
  • A. G. Fatyanov
Article
  • 49 Downloads

Abstract

In this paper, we propose an analytical method of modeling seismic wave fields over a wide range of geophysical media: elastic, inelastic, anisotropic, anisotropic-inelastic, porous, random-inhomogeneous, etc., at very large distances. Since no finite-difference approximations are used, no grid dispersion occurs in computing wave fields for arbitrary media models and observation points. An analytical solution representation in the spectral domain makes it possible to analyze the wave field by parts, specifically, to obtain primary waves. A program of computing the wave fields has been developed, and a simulation of water waves and seismic “ringing” of the Moon has been carried out. The phenomenon of a monotonic shift of the resonance to the lower frequency area with increasing distance of recording is explained. This phenomenon was detected in some experiments with a seismic vibrator.

Keywords

mathematical modeling analytical solution full wave fields primary waves elastic inelastic anisotropic-inelastic porous random-inhomogeneous media 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Konovalov, A.N., Chislennoe reshenie zadach teorii uprugosti v napryazheniyakh: uchebnoe posobie (Numerical Solution of Elasticity Theory Problems in Stresses: Tutorial), Novosibirsk: NGU, 1979.Google Scholar
  2. 2.
    Mikhailenko, B.G., Simulation of Seismic Wave Propagation in Inhomogeneous Media, Sib. Zh. Vych. Mat., 2003, vol. 6, no. 4, pp. 415–429.MATHGoogle Scholar
  3. 3.
    Molotkov, L.A., Matrichnyi metod v teorii rasprostraneniya voln v sloistykh uprugikh i zhidkikh sredakh (The Matrix Method in the Theory of Wave Propagation in Layered Elastic and Liquid Media), Leningrad: Nauka, 1984.Google Scholar
  4. 4.
    Fatyanov, A.G., A Semi-Analytical Method to Solve Direct Dynamic Problems in Layered Media, Dokl. Akad. Nauk, 1990, vol. 310, no. 2, pp. 323–327.MathSciNetGoogle Scholar
  5. 5.
    Fatyanov, A.G., Mathematical Modeling of Wave Fields in Media with Curvilinear Boundaries, Dokl. Akad. Nauk, 2005, vol. 401, no. 4, pp. 529–532.Google Scholar
  6. 6.
    Brekhovskikh, L.M. and Godin, O.A., Akustika sloistykh sred (Acoustics of Layered Media), Moscow: Nauka, 1989.Google Scholar
  7. 7.
    Aki, K. and Richards, P., Kolichestvennaya seismologiya (Quantitative Seismology), Moscow: Mir, 1983.Google Scholar
  8. 8.
    Mikhailenko, B.G. and Fatyanov, A.G., A Semi-Analytical Method to Calculate Nonstationary Wave Fields for Layered-Inhomogeneous Media Models in Matematicheskiemetody resheniya pryamykh i obratnykh zadach geofiziki (Mathematical Methods of Solving Direct and Inverse Problems of Geophysics), Novosibirsk: Computing Center, Sib. Branch, USSR Acad. Sci., 1981, pp. 92–104.Google Scholar
  9. 9.
    Fatyanov, A.G. and Mikhailenko, B.G., A Method to Calculate Nonstationary Wave Fields in Inelastic Layered Inhomogeneous Media, Dokl. Akad. Nauk, 1988, vol. 301, no. 4, pp. 834–839.Google Scholar
  10. 10.
    Glubinnoe seismicheskoe zondirovanie litosfery na Angolo-Brazil’skom geotraverse (Deep Seismic Sounding of the Lithosphere on Angola-Brazil Geotraverse), Zverev, S.M., Kosminskaya, I.P., and Tulina, Yu.V., Eds., Moscow: National Geophysical Committee of RAS, 1996.Google Scholar
  11. 11.
    Burmin, V.Yu. and Fatyanov, A.G., Analytical Simulation of Wave Fields at Very Long Distances and Experimental Investigations of Water Waves, Fiz. Zemli, 2009, no. 4, pp. 43–55.Google Scholar
  12. 12.
    Galkin, I.N. and Shvarev, V.V., Stroenie Luny (The Structure of the Moon), Moscow: Znanie, 1977.Google Scholar
  13. 13.
    Nakamura, Y., Dorman, J., Duennebier, F., Lammlein, D., and Latham, G., Shallow Lunar Structure Determined from the Passive Seismic Experiment, The Moon, 1975, vol. 13, pp. 57–66.CrossRefGoogle Scholar
  14. 14.
    Latham, G., Ewing, M., Press, F., Sutton, G., Dorman, J., Nakamura, Y., Toksoz, N., Wiggins, R., Derr, J., and Duennebier, F., Apollo 11 Passive Seismic Experiment, Geochim. Cosmochim. Acta, 1970, vol. 34, suppl. 1, pp. 2309–2320.Google Scholar
  15. 15.
    Biot, M.A., Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Solid, J. Acoust. Soc. Am., 1956, vol. 28, no. 2, pp. 168–191.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Frenkel, Ya.I., On the Theory of Seismic and Seismoelectric Phenomena in Moist Soil, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz., 1944, vol. 8, no. 4, pp. 133–150.MathSciNetGoogle Scholar
  17. 17.
    Blokhin, A.M. and Dorovsky, V.N., Problemy matematicheskogo modelirovaniya v teorii mnogoskorostnogo kontinuuma (Problems of Mathematical Simulation in the Theory of Multivelocity Continuum), Novosibirsk: SB RAS, 1994.Google Scholar
  18. 18.
    Miroshnikov, V.V. and Fatyanov, A.G., A Semi-Analytical Method to Calculate Wave Fields in Layered Porous Media, Proc. ICMMG SB RAS, Ser. Mat. Model. Geofiz., Novosibirsk, 1993, iss. 1, pp. 27–58.Google Scholar
  19. 19.
    Klyatskin, V.I., Stokhasticheskie uravneniya glazami fizika (Stochastic Equations through the Eye of the Physicist), Moscow: Fizmatlit, 2001.MATHGoogle Scholar
  20. 20.
    Shapiro, V.E. and Loginov, V.M., Dinamicheskie sistemy pri sluchainykh vozdeistviyakh (Dynamic Systems under Random Actions), Novosibirsk: Nauka, 1983.Google Scholar
  21. 21.
    Alekseev, A.S., Glinsky, B.M., Kovalevsky, V.V., Fatyanov, A.G. et al., Metody resheniya pryamykh i obratnykh zadach seismologii, elektromagnetizma i eksperimental’nye issledovaniya v problemakh izucheniya geodinamicheskikh protsessov v kore i verkhnei mantii Zemli (Methods to Solve Direct and Inverse Problems of Seismology, Electromagnetism, and Experimental Investigations of Geodynamic Processes in the Earth’s Crust and Upper Mantle), Mikhailenko, B.G. and Epov, M.I., Eds., Novosibirsk: SB RAS, 2010.Google Scholar
  22. 22.
    Glinsky, B.M., Sobisevich, A.L., Fatyanov, A.G., and Khairetdinov, M.S., Mathematical Simulation and Experimental Studies of the Shugo Mud Volcano, Vulkanol. Seismol., 2008, no. 5, pp. 69–77.Google Scholar
  23. 23.
    Fatyanov, A.G., Direct and Inverse Problems for the Seismic Moment Tensor in Layered Media, Dokl. Akad. Nauk, 1991, vol. 317, no. 6, pp. 1357–1361.MathSciNetGoogle Scholar
  24. 24.
    Fatyanov, A.G. and Terekhov, A.V., High-Performance Modeling Acoustic and Elastic Waves Using the Parallel Dichotomy Algorithm, J. Comput. Phys., 2011, vol. 230, pp. 1992–2003.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations