Numerical Analysis and Applications

, Volume 5, Issue 3, pp 271–283 | Cite as

Reconstruction of the solenoidal part of a three-dimensional vector field by its ray transforms along straight lines parallel to coordinate planes

Article
  • 47 Downloads

Abstract

A numerical solution to a vector field reconstruction problem is proposed. It is assumed that the field is given in a unit sphere. The approximation of the solenoidal part of the vector field is constructed from ray transforms known over all straight lines parallel to one of the coordinate planes. Numerical simulations confirm that the proposed method yields good results of reconstruction of solenoidal vector fields.

Keywords

vector tomography solenoidal vector field approximation inversion formula ray transform fast Fourier transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, K.T., Solmon, D.C., and Wagner, S.L., Practical and Mathematical Aspects of Reconstructing Objects from Radiographs, Bull. Am. Soc., 1977, vol. 83, no. 1, pp. 1227–1270.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Louis, A.K., Nonuniqueness in Inverse Radon Problems: The Frequency Distribution of the Ghost, Math. Z., 1984, no. 185, pp. 429–440.Google Scholar
  3. 3.
    Derevtsov, E.Yu., Ghost Distributions in the Cone-Beam Tomography, J. Inv. Ill-Posed Problems, 1997, vol. 5, no. 5, pp. 411–426.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Davison, M.E., The Ill-Conditioned Nature of the Limited Angle Tomography Problem, SIAM J. Appl. Math., 1983, vol. 43, pp. 428–448.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Quinto, E.T., Singular Value Decompositions and Inversion Methods for the Exterior Radon Transform and a Spherical Transform, SIAM J.Math. Anal. Appl., 1985, vol. 95, pp. 437–448.MathSciNetGoogle Scholar
  6. 6.
    Firbas, P., Tomography from Seismic Profiles, Seismic Tomorgaphy, Dordrecht: Reidel, 1987, pp. 189–202.CrossRefGoogle Scholar
  7. 7.
    Alekseev, A.S., Lavrent’ev, M.M., Romanov, M.E., and Romanov, V.G., Theoretical and Computational Aspects of Seismic Tomography, Surv. Geophys., 1990, no. 11, pp. 395–409.Google Scholar
  8. 8.
    Palamodov, V.P., Reconstruction from Limited Data of ArcMeans, J. Fourier Anal. Appl., 2000, vol. 6, no. 1, pp. 25–42.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Sharafutdinov, V.A., Integral’naya geometriya tenzornykh polei (Integral Geometry of Tensor Fields), Novosibirsk: Nauka, 1993.Google Scholar
  10. 10.
    Schuster, T., The 3DDoppler Transform: Elementary Properties and Computation ofReconstructionKernels, Inv. Problems, 2000, no. 16, pp. 701–722.Google Scholar
  11. 11.
    Vertgeim, L., Integral Geometry Problems for Symmetric Tensor Fields with Incomplete Data, J. Inv. Ill-Posed Problems, 2000, no. 8, pp. 353–362.Google Scholar
  12. 12.
    Denisjuk, A., Inversion of the X-ray Transform for 3D Symmetric Tensor Fields with Sources on a Curve, Inv. Problems, 2000, no. 22, pp. 399–411.Google Scholar
  13. 13.
    Sharafutdinov, V., Slice-by-Slice Reconstruction Algorithm for Vector Tomography with Incomplete Data, Inv. Problems, 2007, no. 23, pp. 2603–2627.Google Scholar
  14. 14.
    Kochin, N.E., Vektornoe ischislenie i nachala tenzornogo ischisleniya (Vector Calculus and Fundamentals of Tensor Calculus), Moscow: Nauka, 1965.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations