Numerical Analysis and Applications

, Volume 5, Issue 2, pp 162–167 | Cite as

Modeling flow in porous media with fractures; Discrete fracture models with matrix-fracture exchange

Article

Abstract

This article is concerned with a numerical model for flow in a porous medium containing fractures. The fractures are modeled as (d − 1)-dimensional surfaces inside the d-dimensional matrix domain, and a mixed finite element method containing both d and (d − 1) dimensional elements is used. The method allows for fluid exchange between the fractures and the matrix. The method is defined for single-phase Darcy flow throughout the domain and for Forchheimer flow in the fractures. We also consider the case of two-phase flow in a domain in which the fractures and the matrix are of different rock type.

Keywords

flow in porous media fractures multiscale modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alboin, C., Jaffré, J., Roberts, J.E., and Serres, C., Modeling Fractures as Interfaces for Flow and Transport in Porous Media, in Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment, Cont. Math., 2002, vol. 295, pp. 13–24.CrossRefGoogle Scholar
  2. 2.
    Amir, L., Kern, M., Martin, V., and Roberts, J.E., Décoposition de Domaine pour un Milieu Poreux Fracturé: Un Modèle en 3d Avec Fractures qui s’Intersectent, ARIMA, 2006, vol. 5, pp. 11–25.Google Scholar
  3. 3.
    Amirat, Y., Ecoulements en Milieu Poreux n’Obeissant pas a la Loi de Darcy, RAIRO Model. Math. Anal. Num., 1991, vol. 25, no. 3, pp. 273–306.MathSciNetMATHGoogle Scholar
  4. 4.
    Angot, P., Boyer, F., and Hubert, F., Asymptotic and Numerical Modelling of Flows in Fractured Porous Media, Math. Modell. Num. Anal., 2009, vol. 43, no. 2, pp. 239–275.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chavent, G. and Jaffré, J., Mathematical Models and Finite Elements for Reservoir Simulation, Amsterdam: North Holland, 1986.MATHGoogle Scholar
  6. 6.
    D’Angelo, C. and Scotti, A., A Mixed Finite Element Method for Darcy Flow in Fractured Porous Media with Non-Matching Grids, ESAIM, Math. Modell. Num. Anal., 2012, vol. 46, no. 2, pp. 465–489.CrossRefGoogle Scholar
  7. 7.
    Frih, N., Martin, V., Roberts, J.E., and Saada, A., Modeling Fractures as Interfaces with Nonmatching Grids, submitted.Google Scholar
  8. 8.
    Frih, N., Roberts, J.E., and Saada, A., Modeling Fractures as Interfaces: A Model for Forchheimer Fractures, Comp. Geosci., 2008, no. 12, pp. 91–104.Google Scholar
  9. 9.
    Knabner, P. and Roberts, J.E., Forchheimer Flow in Porous Media with Fractures, submitted.Google Scholar
  10. 10.
    Knabner, P. and Summ, G., Solvability of the Mixed Formulation for Darcy-Forchheimer Flow in Porous Media, submitted.; http://www1.am.uni-erlangen.de/members/knabner/Forschung/publikationen.html.
  11. 11.
    Lesinigo, M., D’Angelo, C., and Quarteroni, A., A Multiscale Darcy-Brinkman Model for Fluid Flow in Fractured Porous Media, Numerische Math., 2011, vol. 117, no. 4, pp. 717–752.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Martin, V., Jaffré, J., and Roberts, J.E., Modeling Fractures and Barriers as Interfaces for Flow in Porous Media, SIAM J. Sci. Comp., 2005, vol. 26, no. 5, pp. 1667–1691.MATHCrossRefGoogle Scholar
  13. 13.
    Morales, F. and Showalter, R.E., The Narrow Fracture Approximation by Channeled Flow, J. Math. Anal. Appl., 2010, vol. 365, no. 1, pp. 320–331.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Inria Paris-RocquencourtLe Chesnay CedexFrance

Personalised recommendations