Numerical Analysis and Applications

, Volume 4, Issue 2, pp 175–187 | Cite as

The influence of time step size on the results of numerical modeling of global ocean climate

Article
  • 44 Downloads

Abstract

Based on a numerical large-scale geostrophic ocean thermohaline circulation model, the influence of time step size in modeling large-scale temperature and salinity fields with the use of an implicit time integration method is investigated. It is shown that for a more realistic description of the processes of deep vertical convection and ocean thermohaline circulation, it is necessary to use time steps less than 10 days. At such time steps, the influence of numerical viscosity (diffusion) is insignificant.

Keywords

global ocean thermohaline circulation implicit numerical model numerical viscosity equilibrium solutions convection parametrization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryan, K., Climate and the Ocean Circulation. III. The Ocean Model, Monthly Weather Rev., 1969, vol. 97, pp. 806–827.CrossRefGoogle Scholar
  2. 2.
    Cox, M.D., A Primitive Equation. 3-Dimensional Model of the Ocean, GFDL Ocean Group Tech. Rep., no. 1, Princeton, 1984.Google Scholar
  3. 3.
    Pacanowski, R.C. and Griffies, S.M., The MOM 3 Manual, Geophys. Fluid Dynamics Lab., Princeton: NOAA, 1999.Google Scholar
  4. 4.
    Zalesny, V.B., Modelirovanie krupnomasshtabnykh dvizhenii v mirovom okeane (Modeling of Large-Scale Motions in the World Ocean), Moscow: Dep. Comp. Math. USSR Acad. Sci., 1984.Google Scholar
  5. 5.
    Zalesny, V.B., Numerical Modeling of the World Ocean Thermohaline Circulation, Met. Gidrol., 1998, no. 2, pp. 54–64.Google Scholar
  6. 6.
    Zalesny, V.B. and Moshonkin, S.N., Equilibrium Thermohaline Regime of Global Ocean Circulation, Izv. Ross. Akad. Nauk, Fiz. Atm. Ok., 1999, vol. 35, no. 3, pp. 371–398.Google Scholar
  7. 7.
    Golubeva, E.N., Ivanov, Yu.A., Kuzin, V.I., and Platov, G.A., Numerical Modeling of the World Ocean Circulation Taking into Account the Upper Quasi-Homogeneous Layer, Okeanol., 1992, vol. 32, no. 3, pp. 395–405.Google Scholar
  8. 8.
    Kuzin, V.I., Golubeva, E.N., and Platov, G.A., Modelirovanie gidrofizicheskikh kharateristik sistemy Severny Ledovityi okean-Severnaya Atlantika (Modeling of Hydrophysical Characteristics of the Arctic Ocean-North Atlantic System), in Fundamental’nye issledovaniya okeanov i morei (Fundamental Investigations of Oceans and Seas), vol. 1, Moscow: Nauka, 2006.Google Scholar
  9. 9.
    Seidov, D., An Intermediate Model for Large-Scale Ocean Circulation Studies, Dyn. Atm. Oc., 1996, vol. 25, pp. 25–55.CrossRefGoogle Scholar
  10. 10.
    Edwards, N.R., Willmott, A.J., and Killworth, P.D., On the Role of Topography and Wind Stress on the Stability of the Thermohaline Circulation, J. Phys. Oc., 1998, vol. 28, pp. 756–778.CrossRefGoogle Scholar
  11. 11.
    Maier-Reimer, E. and Mikolajewicz, U., The Hamburg Large-Scale Geostrophic Ocean Circulation Modell., Tech. Rep., Deutch.: KlimaRechenZentrum, 1990.Google Scholar
  12. 12.
    Maier-Reimer, E., Mikolajewicz, U., and Hasselmann, K., Mean Circulation of the Hamburg LSG OGCM and Its Sensitivity to the Thermohaline Surface Forcing, J. Phys. Oc., 1993, no. 23, pp. 731–757.Google Scholar
  13. 13.
    Gorchakov, V.A. and Ryabchenko, V.A., Modeling of the Indian Ocean Seasonal Variability: Effects of the Upper Quasi-Homogeneous Layer, Okeanologiya, 1992, vol. 32, no. 2, pp. 203–210.Google Scholar
  14. 14.
    Fokin, S.A. and Katsov, V.M., A Model of General Ocean Circulation as a Component of the Combined Global Climatic GGO Model, Met. Gidrol., 2001, no. 3, pp. 5–18.Google Scholar
  15. 15.
    Shcherbakov, A.V. and Malakhova, V.V., Chislennoe modelirovanie global’nogo klimata okeana (Numerical Modeling of Global Ocean Climate), Novosibirsk: Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 2008.Google Scholar
  16. 16.
    Sarkisyan, A.S., Chislennyi analiz i prognoz morskikh techenii (Numerical Analysis and Prediction of Sea Currents), Leningrad: Gidrometeoizdat, 1977.Google Scholar
  17. 17.
    Marchuk, G.I. and Sarkisyan, A.S., Matematicheskoe modelirovanie tsirkulyatsii okeana (Mathematical Modeling of Ocean Circulation), Moscow: Nauka, 1988.MATHGoogle Scholar
  18. 18.
    Levitus, S., Climatological Atlas of the World Ocean, NOAA/ERL GFDL Professional Paper 13, Princeton, 1982.Google Scholar
  19. 19.
    Cai, W., Circulation Driven by Observed Surface Thermohaline Fields in a Course Resolution Ocean General Circulation Model, J. Geoph. Res., 1994, vol. 99, no. C5, pp. 10163–10181.CrossRefGoogle Scholar
  20. 20.
    Shcherbakov, A.V. and Sinyagovskaya, V.V., Richardson Extrapolation on a Nonuniform Grid in the Problem of Advection-Diffusion Transfer, Trudy VTS SO RAN. Ser. Chisl. Modelirovanie v zadachakh atmosfery, okeana i okruzhayushchei sredy (Proc. Comp. Center SB RAS. Ser. Numerical Modeling in Problems of Atmosphere, Ocean, and Environment), 1993, no. 1, pp. 47–59.Google Scholar
  21. 21.
    Manabe, S. and Bryan, K., Klimat i tsirkulyatsiya okeana (Climate and the Ocean Circulation), Leningrad: Gidrometeoizdat, 1972.Google Scholar
  22. 22.
    Shcherbakov, A.V. and Moiseyev, V.M., A Difference Scheme for the Advection-Diffusion Equation, Preprint of the Computing Center, Siberian Branch, Russ. Acad. Sci., Novosibirsk, 1985, no. 631.Google Scholar
  23. 23.
    Roach, P., Vychislitel’naya gidrodinamika (Computational Hydrodynamics), Moscow: Mir, 1980.Google Scholar
  24. 24.
    Scherbakov, A.V., Block Iterative Process for a Difference Advection-Diffusion Equation on a Sphere, Proc. Int. Conf. on Comput. Math., Part 1, Novosibirsk: Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 2002, pp. 124–129.Google Scholar
  25. 25.
    Marchuk, G.I., Metody vychislitel’noi matematiki (Methods of Computational Mathematics), Moscow: Nauka, 1977.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Ugra Research Institute of Information TechnologiesKhanty-Mansiysk, Tyumen oblastRussia
  2. 2.Institute of Computational Mathematics and Mathematical Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations