Polymer Science, Series D

, Volume 10, Issue 2, pp 179–184 | Cite as

Application of diffusion techniques for formation of zinc coatings to improve corrosion resistance of structural steels

  • L. G. Petrova
  • P. E. Demin
  • S. I. Barabanov
  • A. V. Kosachev
Article
  • 22 Downloads

Abstract

A technique for the formation of diffusion layers based on zinc on the surface of low-carbon low-alloy steels for their corrosion protection is considered. The possibility of the formation of dense corrosion-resistant coatings with a smooth hardness gradient through depth by diffusion zinc-plating combined with gas nitriding is studied.

Keywords

low-carbon steels low-alloy steels corrosion resistance chemical–thermal treatment nitriding zinc-plating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Zhukov and A. I. Malakhov Fundamentals of Metallurgy and Corrosion Theory (Vyssh. shk., Moscow, 1991) [in Russian].Google Scholar
  2. 2.
    I. G. Rodionova, A. I. Zaitsev, O. N. Baklanova, A. Yu. Kazankov, V. V. Naumenko, and G. V. Semernin, “Impact of the structural heterogeneity of carbon steel on corrosion resistance in chloride-containing environments,” Metallurg, No. 9, 38–45 (2015).Google Scholar
  3. 3.
    N. G. Anufriev, N. E. Smirnova, and S. V. Oleinik, “Application of modern zinc-filled primers for protection of steel structures against corrosion,” Korroz. Mater. Zashch., No. 2, 29–31 (2003).Google Scholar
  4. 4.
    V. M. Gusev, V. B. Mordynskii, and M. G. Frolova, “Influence of dynamic thermal diffusion coatings on corrosion resistance of carbon and low-alloy steels,” Stal’, No. 1, 77–79 (2015).Google Scholar
  5. 5.
    L. G. Petrova, V. A. Aleksandrov, and P. E. Demin, “Improving the corrosion resistance of high-alloy steels by hydroplasmic nitriding,” in 16th Int. Symp. Dynamic and Technological Problems in Mechanics of Structures and Continua named after A. G. Gorshkov (2010), Vol. 1, pp. 137–139.Google Scholar
  6. 6.
    B. B. Damaskin, O. A. Petrii, and G. A. Tsirlina, Electrochemistry (Lan’, St. Petersburg, 2015) [in Russian].Google Scholar
  7. 7.
    V. M. Prikhod’ko, N. I. Baurova, and V. A. Zorin, “Description of degradation of properties of materials using the tools of the theory of catastrophes,” Vse Mater., Entsikl. Sprav., No. 11, 14–19 (2014).Google Scholar
  8. 8.
    N. I. Baurova, V. A. Zorin, and V. M. Prikhodko, “Technological heredity and identification of technological processes,” Polym. Sci., Ser. D 8 (3), 219–222 (2015).CrossRefGoogle Scholar
  9. 9.
    P. E. Demin, L. G. Petrova, and A. V. Kosachev, “Advanced combined technologies of chemical and thermal treatment to increase the service life of parts of bridges,” Naukoemkie Tekhnol. Mashinostr., No. 10, 11–16 (2015).Google Scholar
  10. 10.
    A. S. Borodulin, G. V. Malysheva, and I. K. Romanova, “Optimization of rheological properties of binders used in vacuum assistsed resin transfer molding of fiberglass,” Polym. Sci., Ser. D 8 (4), 300–303 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. G. Petrova
    • 1
  • P. E. Demin
    • 1
  • S. I. Barabanov
    • 2
  • A. V. Kosachev
    • 1
  1. 1.Moscow Automobile and Road Construction State Technical UniversityMoscowRussia
  2. 2.Vympel State Engineering Design BureauMoscowRussia

Personalised recommendations