Advertisement

Polymer Science Series D

, Volume 9, Issue 2, pp 238–242 | Cite as

Characteristics of silicon microdroplets in coatings deposited by vacuum arc evaporation

  • D. V. Dukhopel’nikov
  • D. V. Kirillov
  • V. S. Bulychev
Article
  • 35 Downloads

Abstract

The current methods of silicon coating deposition use toxic materials or have low growth rates and high energy consumption. Vacuum arc evaporation allows achieving high rates of coating growth along with low energy consumption. The main drawback of this method is the presence of microdroplets in the cathode erosion products that change the performance characteristics of coatings. In some cases, microdroplets can be used for the preparation of porous silicon layers. To predict the characteristics of coatings, one should know the characteristics of microdroplets generated in the vacuum arc discharge. The present work is dedicated to the experimental study of the sizes and shapes of microdroplets obtained in the vacuum arc discharge with a silicon cathode. We used a vacuum arc evaporator with controlled motion of a cathode spot to provide steady-state arcing on the silicon cathode. The typical shapes of droplets and their cross sections obtained on an atomic-force microscope are given. The distribution of drop amount in the coating as a function of drop shape is given.

Keywords

silicon coating arc discharge vacuum arc vacuum arc evaporator microdroplet phase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Gerasimenko and Yu. N. Parkhomenko, Silicon as a Nanoelectronics Material (Tekhnosfera, Moscow, 2007) [in Russian].Google Scholar
  2. 2.
    M. S. Laranjeira, A. Carvalho, A. Pelaez-Vargas, et al., “Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications,” Sci. Technol. Adv. Mater. 15 (2), 025001 (2014).CrossRefGoogle Scholar
  3. 3.
    M. Ge, X. Fang, J. Rong, and C. Zhou, “Review of porous silicon preparation and its application for lithiumion battery anodes,” Nanotecnology 24 (42), 422001 (2013).CrossRefGoogle Scholar
  4. 4.
    F. Liang, H. Wang, and Ch. Zou, “Effects of ion source voltages on the composition, hardness, and temperature-dependent tribological properties of Ti–Al–Si–N nanocomposite coatings,” Jpn J. Appl. Phys. 53 (7), 075503 (2014).CrossRefGoogle Scholar
  5. 5.
    V. V. Vas’kevich, V. E. Gaishun, and D. L. Kovalenko, “Synthesis and study of silicate sol-gel coatings for micro and nanoelectronics,” Nanosyst., Nanomater., Nanotechnol. 12 (2), 279–293 (2014).Google Scholar
  6. 6.
    S. Ishihara, M. Kitagava, T. Hira, et al., “Effects of discharge parameters on deposition rate of hydrogenated amorphous silicon for solar cells from pure SiH4 plasma,” J. Appl. Phys. 62, 485–491 (1987).CrossRefGoogle Scholar
  7. 7.
    Molecular Beam Epitaxy and Heterostructures, Ed. by L. L. Chang and K. Ploog, (Nijhoff, Amsterdam, 1985).Google Scholar
  8. 8.
    A. Kasdan and D. P. Goshorn, “Ion bombardment control of morphology during the growth of hydrogenated amorphous silicon thin films by reactive ion beam deposition,” Appl. Phys. Lett. 42 (1), 36–38 (1983).CrossRefGoogle Scholar
  9. 9.
    D. M. Mitin and A. A. Serdobintsev, “Properties of silicon films grown at different pressures in the plasmaforming system,” Fiz. Tekh. Poluprovodn. (S.-Peterburg) 47 (9), 1276–1278 (2013).Google Scholar
  10. 10.
    D. V. Dukhopel’nikov, A. V. Zhukov, D. V. Kirillov, and M. K. Marakhtanov, “Structure and features of the motion of a cathode spot on a continuous titanium cathode,” Meas. Tech. 48 (10), 995–999 (2005).CrossRefGoogle Scholar
  11. 11.
    D. V. Dukhopel’nikov, A. V. Zhukov, A. A. Kostin, and A. A. Yurchenko, “Motion control of the cathode spot in linear vacuum arc evaporators,” Uprochnyayushchie Tekhnol. Pokrytiya, No. 11, 45–49 (2005).Google Scholar
  12. 12.
    D. V. Dukhopel’nikov, D. V. Kirillov, E. V. Vorob’ev, and S. G. Ivakhnenko, “Influence of the cathode arc evaporator generation on the uniformity of the coating thickness and angular distribution of erosion products,” Nauka Obraz., Nauch. Izd. MGTU im. N.E. Baumana, No. 4, 1–9 (2014).Google Scholar
  13. 13.
    G. A. Mesyats and S. A. Barengol’ts, “Mechanism of anomalous ion generation in vacuum arcs,” Usp. Fiz. Nauk 172 (10), 1113–1130 (2002).CrossRefGoogle Scholar
  14. 14.
    M. Naoe and Sh. Yamanaka, “Evaporation of silicon by vacuum-arc discharge,” Jpn. J. Appl. Phys. 8 (2), 287–288 (1969).CrossRefGoogle Scholar
  15. 15.
    M. K. Marakhtanov, D. V. Dukhopel’nikov, A. V. Zhukov, D. V. Kirillov, A. K. Melik-Parsadanyan, and Yu. N. Parkhomenko, “Vacuum arc with monocrystalline silicon anode to produce nanostructured materials,” Sprav., Inzh. Zh. Prilozh., No. 9, 22–27 (2008).Google Scholar
  16. 16.
    D. V. Dukhopel’nikov, M. K. Marakhtanov, and A. K. Melik-Parsadanyan, “Electrical parameters and mass transfer in a vacuum-arc discharge with a monocrystalline silicon cathode,” Uprochnyayushchie Tekhnol. Pokrytiya, No. 7, 21–25 (2010).Google Scholar
  17. 17.
    D. V. Dukhopel’nikov, D. V. Kirillov, M. K. Marakhtanov, E. V. Vorob’ev, and V. S. Bulychev, “Vacuum arc on polycrystalline silicon anode,” Nauka Obraz., Nauchn. Izd. MGTU im. N. E. Baumana, No. 11, 188–197 (2014).Google Scholar
  18. 18.
    D. V. Dukhopel’nikov, D. V. Kirillov, V. A. Ryazanov, and Ch. V. Naing, “Optimizing the trajectory of the cathode spot movement to improve the uniformity of production of the vacuum arc evaporator cathode,” Inzh. Zh., Nauka Innovatsii, No. 10, 42 (2013).Google Scholar
  19. 19.
    D. V. Kirillov and V. A. Ryazanov, “Study of a cathode arc evaporator generation profile at different discharge currents and magnetic field induction,” Molodezhnyi Nauchno-Tekh. Vestn., No. 5, 18 (2013).Google Scholar
  20. 20.
    V. V. Beregovskii, M. K. Marakhtanov, D. V. Dukhopel’nikov, and S. A. Shchurenkova, “The volume content of the particulate composition of the droplet phase in the coatings obtained by vacuum-arc method at the unit PLATIT p-80,” Uprochnyayushchie Tekhnol. Pokrytiya, No. 1, 3–5 (2009).Google Scholar
  21. 21.
    Yu. A. Sysoev, “Features of condensation of the droplet phase of the vacuum arc charge at the ion cleaning stage,” Aviats.-Kosmich. Tekh. Tekhnol., No. 3, 15–19 (2014).Google Scholar
  22. 22.
    V. V. Beregovskii, D. V. Dukhopel’nikov, M. K. Marakhtanov, and S. A. Shchurenkova, “Comparative analysis of the droplet phase in the coatings obtained by vacuum arc deposition at units type of HHB and PLATIT p80,” Vestn. Magnitogorsk. Gos. Tekh. Univ. im. G.I. Nosova, No. 4, 29–32 (2008).Google Scholar
  23. 23.
    A. A. Bizyukov, E. V. Romashchenko, K. N. Sereda, A. D. Chibisov, and A. E. Kashaba, “The dynamics of the droplet phase in the plasma of the arc discharge of low pressure,” Vestn. Khar’k. Univ., Ser. Yadra, Chastitsy, Polya, No. 642, 42–46 (2004).Google Scholar
  24. 24.
    P. Fauchais, “Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: An invited review,” J. Phys. D, Appl. Phys. 44 (9) (2011).Google Scholar
  25. 25.
    K. Yang, “Recent developments in the research of splat formation process in thermal spraying,” J. Mater. 2013 (2013).Google Scholar
  26. 26.
    Chr. Mundo, “Droplet-wall collisions: Experimental studies of the deformation and breakup process,” Int. J. Multiphase Flow 21 (2), 151–173 (1995).CrossRefGoogle Scholar
  27. 27.
    A. L. Yarin, “Drop impact dynamics: Splashing, spreading, receding, bouncing,” Annu. Rev. Fluid Mech. 38, 159–192 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. V. Dukhopel’nikov
    • 1
  • D. V. Kirillov
    • 1
  • V. S. Bulychev
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations